Abstract

The generation of programmable multiwavelength pulses based on the self-frequency shift of a Raman soliton is demonstrated. The approach produces tunable multiwavelength picosecond pulses. Only select multiwavelength signals with a tuning range of approximately 50 nm are generated with a repetition rate of 9.95 GHz at each wavelength channel. A bit error rate (BER) of better than 1 × 10-9 was successfully obtained for all the measured multiwavelength Raman soliton pulses. Furthermore, it was found that the signal has an excellent relative intensity noise (RIN) of better than -135.5 dBc/Hz. The BER and RIN measurements show that the frequency-shifted Raman soliton pulses are promising for use in measurement systems, optical gating, signal processing, and wavelength routing optical packet networks with the ability to provide 1:1 communication and 1:N multicasting.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
    [CrossRef]
  2. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Broad bandwidths from frequency-shifting solitons in fibers,” Opt. Lett. 14, 370–372 (1989).
    [CrossRef] [PubMed]
  3. N. Nishizawa, T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
    [CrossRef]
  4. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, L. Goldberg, “Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber,” Opt. Lett. 24, 1428–1430 (1999).
    [CrossRef]
  5. F. Druon, N. Sanner, G. Lucas-Leclin, P. Georges, K. P. Hansen, A. Petersson, “Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator,” Appl. Opt. 42, 6768–6770 (2003).
    [CrossRef] [PubMed]
  6. M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
    [CrossRef]
  7. M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline paper CPDB4.
  8. M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.
  9. M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of 29th European Conference on Optical Communication (ECOC) (AEI-Ufficio Centrale, Piazzale R. Morandi 2, Milan, Italy, 2003), Postdeadline paper Th4.3.7.
  10. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  11. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  12. S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
    [CrossRef]
  13. M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
    [CrossRef]
  14. M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
    [CrossRef]
  15. T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [CrossRef]
  16. M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [CrossRef]
  17. G. M. Macfarlane, A. S. Bell, E. Riis, A. I. Ferguson, “Optical comb generator as an efficient short-pulse source,” Opt. Lett. 21, 534–536 (1996).
    [CrossRef] [PubMed]

2004 (1)

M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

1999 (2)

N. Nishizawa, T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, L. Goldberg, “Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber,” Opt. Lett. 24, 1428–1430 (1999).
[CrossRef]

1996 (1)

1993 (2)

T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

1989 (1)

1986 (2)

1972 (2)

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Bar-Joseph, I.

Becker, M.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
[CrossRef]

Bell, A. S.

Chemla, D. S.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Druon, F.

Ferguson, A. I.

Fermann, M. E.

Fujiura, K.

M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of 29th European Conference on Optical Communication (ECOC) (AEI-Ufficio Centrale, Piazzale R. Morandi 2, Milan, Italy, 2003), Postdeadline paper Th4.3.7.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline paper CPDB4.

Galvanauskas, A.

Georges, P.

Goldberg, L.

Gordon, J. P.

Goto, T.

N. Nishizawa, T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Hansen, K. P.

Harter, D.

Islam, M. N.

Itoh, M.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Kato, M.

M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of 29th European Conference on Optical Communication (ECOC) (AEI-Ufficio Centrale, Piazzale R. Morandi 2, Milan, Italy, 2003), Postdeadline paper Th4.3.7.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline paper CPDB4.

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Kourogi, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Kuizenga, D.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
[CrossRef]

Kurihara, T.

M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of 29th European Conference on Optical Communication (ECOC) (AEI-Ufficio Centrale, Piazzale R. Morandi 2, Milan, Italy, 2003), Postdeadline paper Th4.3.7.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline paper CPDB4.

Kurokawa, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Lucas-Leclin, G.

Macfarlane, G. M.

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Mori, K.

T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Morioka, T.

T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Nishizawa, N.

N. Nishizawa, T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Okamoto, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Okuno, M.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Petersson, A.

Riis, E.

Sanner, N.

Saruwatari, M.

T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Shibata, T.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Siegman, A.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
[CrossRef]

Sohma, S.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Stock, M. L.

Sucha, G.

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Takahashi, H.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Wegener, M.

Wong, K. K.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Electron. Lett. (3)

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

T. Morioka, K. Mori, M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Generation of super-stable 40 GHz pulses from Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 687–693 (1972).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Nishizawa, T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Opt. Lett. (5)

Other (4)

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of 29th European Conference on Optical Communication (ECOC) (AEI-Ufficio Centrale, Piazzale R. Morandi 2, Milan, Italy, 2003), Postdeadline paper Th4.3.7.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of the wavelength-tunable, multiwavelength RS generation.

Fig. 2
Fig. 2

Configuration of the programmable PLC multiplexer: TO, thermo-optic.

Fig. 3
Fig. 3

Experimental setup for programmable multiwavelength RS generation.

Fig. 4
Fig. 4

Configuration of the seed pulse source: WT-LD, wavelength-tunable single-mode laser diode; PM-EDFA, polarization-maintaining EDFA; PM-ISO, PM isolator; RF-amp, RF amplifier; EOM, electro-optic modulator; M, mirror; TCU, Peltier temperature control unit.

Fig. 5
Fig. 5

Output spectrum of the seed pulse. Inset, autocorrelation trace of the seed pulse.

Fig. 6
Fig. 6

Experimental setup for BER measurements: MOD, modulator; PPG, pulse pattern generator; OR, optical receiver.

Fig. 7
Fig. 7

Experimental dependence of wavelength shift versus EDFA output.

Fig. 8
Fig. 8

Examples of select multiwavelength generation induced by four pulse trains. Generated multiwavelengths at (a) 1555.1, 1571.4, 1582.0, and 1604.7 nm and (b) 1555.1, 1576.2, 1590.7, and 1597.8 nm.

Fig. 9
Fig. 9

Received power of wavelength-tuned RS pulses at a BER of 1 × 10-9. Inset, eye pattern of RS pulses measured at 1560 nm.

Fig. 10
Fig. 10

Linear approximation of the soliton frequency shift versus pulse width.

Fig. 11
Fig. 11

Frequency shift response with respect to input power.

Fig. 12
Fig. 12

BER performances measured with the 3- and 0.5-nm tunable OBF at the same 7-nm wavelength-shifted RS pulses.

Fig. 13
Fig. 13

Spectra of RS pulses with and without ASE coupling.

Fig. 14
Fig. 14

Experimental setup for the measurement of attenuation caused by a mismatch between the center wavelengths of the signal and the OBF: G-EDFA, gain-flattened EDFA; C.S., channel selector; S.A., spectrum analyzer; P.M., powermeter.

Fig. 15
Fig. 15

Measured attenuation caused by a mismatch between the center wavelengths of the signal and the OBF.

Fig. 16
Fig. 16

Spectra of the signals amplified into the RS power regime of the RS fiber.

Fig. 17
Fig. 17

Additional wavelength shift caused by ASE coupling versus wavelength shift.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

-iuq=122uτ2+|u|2u-τnτ0 u |u|2τ.
dv0dzTHz/km=-105λ2D16πctc30dΩΩ3RΩ/2πtc/sinh2πΩ/2,

Metrics