Abstract

An optimization algorithm that combines a rigorous electromagnetic computation model with an effective iterative method is utilized to design diffractive micro-optical elements that exhibit fast convergence and better design quality. The design example is a two-dimensional 1-to-2 beam splitter that can symmetrically generate two focal lines separated by 80 μm at the observation plane with a small angle separation of ±16°. Experimental results are presented for an element with continuous profiles fabricated into a monocrystalline silicon substrate that has a width of 160 μm and a focal length of 140 μm at a free-space wavelength of 10.6 μm.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm

Feng Di, Yan Yingbai, Jin Guofan, Tan Qiaofeng, and Haitao Liu
J. Opt. Soc. Am. A 20(9) 1739-1746 (2003)

A rigorous unidirectional method for designing finite aperture diffractive optical elements

Jianhua Jiang and Gregory P. Nordin
Opt. Express 7(6) 237-242 (2000)

Achromatic hybrid refractive-diffractive lens with extended depth of focus

Angel Flores, Michael R. Wang, and Jame J. Yang
Appl. Opt. 43(30) 5618-5630 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription