Abstract

Optical coupling between preferential-order volume diffraction grating couplers fabricated on independent substrates is demonstrated. The coupling efficiency between gratings is quantified as a function of both grating and waveguide fabrication technology and relative angular position of the two substrates. A maximum grating-to-grating coupling efficiency of 31% is reported for coupling between two nonoptimized, nonfocusing, unpatterned volume grating couplers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
    [CrossRef]
  2. S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
    [CrossRef]
  3. P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
    [CrossRef]
  4. M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
    [CrossRef]
  5. S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
    [CrossRef]
  6. J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).
  7. J. Kobayashi, T. Matsuura, S. Sasaki, T. Maruno, “Directional couplers using fluorinated polyimide waveguides,” J. Lightwave Technol. 16, 610–614 (1998).
    [CrossRef]
  8. T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998).
    [CrossRef]
  9. Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
    [CrossRef]
  10. S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
    [CrossRef]
  11. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
    [CrossRef]
  12. M. L. Jones, R. P. Kenan, C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995).
    [CrossRef] [PubMed]
  13. W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
    [CrossRef]
  14. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
    [CrossRef]
  15. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  16. J. Yeh, A. Harton, K. Wyatt, “Reliability study of holographic optical elements made with DuPont photopolymer,” Appl. Opt. 37, 6270–6274 (1998).
    [CrossRef]
  17. M. L. Jones, “Design of normal-incidence waveguide-embedded phase gratings for optical interconnects in multi-chip modules,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1995).
  18. A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).
  19. W. DuMouchel, F. O’Brien, “Integrating a robust option into a multiple regression computing environment,” in Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk, L. Malone, eds. (American Statistical Association, Alexandria, Va.1989), pp. 297–301.

2004 (1)

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

2002 (1)

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

2001 (1)

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

2000 (1)

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

1999 (2)

S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
[CrossRef]

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

1998 (4)

J. Kobayashi, T. Matsuura, S. Sasaki, T. Maruno, “Directional couplers using fluorinated polyimide waveguides,” J. Lightwave Technol. 16, 610–614 (1998).
[CrossRef]

T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998).
[CrossRef]

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

J. Yeh, A. Harton, K. Wyatt, “Reliability study of holographic optical elements made with DuPont photopolymer,” Appl. Opt. 37, 6270–6274 (1998).
[CrossRef]

1997 (2)

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).

1995 (1)

1992 (1)

P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
[CrossRef]

Abraham, P.

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

Albert, J.

P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
[CrossRef]

Bowers, J. E.

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

Chen, A.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Chuyanov, V.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Connolly, J.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Dalton, L. R.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Dapkus, P. D.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Djordjev, K.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

DuMouchel, W.

W. DuMouchel, F. O’Brien, “Integrating a robust option into a multiple regression computing environment,” in Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk, L. Malone, eds. (American Statistical Association, Alexandria, Va.1989), pp. 297–301.

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Garner, S. M.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Gaylord, T. K.

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
[CrossRef]

A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).

Gerstadt, W. A.

W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Glytsis, E. N.

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
[CrossRef]

Griffel, G.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Harton, A.

Jones, M. L.

M. L. Jones, R. P. Kenan, C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995).
[CrossRef] [PubMed]

M. L. Jones, “Design of normal-incidence waveguide-embedded phase gratings for optical interconnects in multi-chip modules,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1995).

Jun Choi, S.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

June Choi, S.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Kenan, R. P.

Kobayashi, J.

Lee, S.-S.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Liang, T.

T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998).
[CrossRef]

Lin, W.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Link, J.

J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).

Liu, B.

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

Makara, S. R.

W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Maruno, T.

Matsuura, T.

Meindl, J. D.

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).

Menna, R.

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

Mulé, A. V.

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).

Nishida, R.

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

Nishihara, H.

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Noutsios, P. C.

P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
[CrossRef]

O’Brien, F.

W. DuMouchel, F. O’Brien, “Integrating a robust option into a multiple regression computing environment,” in Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk, L. Malone, eds. (American Statistical Association, Alexandria, Va.1989), pp. 297–301.

Raburn, M.

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

Sasaki, S.

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schultz, S. M.

Solberg, V.

J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).

Steier, W. H.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Suhara, T.

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Ura, S.

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Verber, C. M.

Villalaz, R.

A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Wyatt, K.

Xing, Q. D.

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Yacoubian, A.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

Yeh, J.

Yip, G. L.

P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
[CrossRef]

Ziolkowski, R. W.

T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998).
[CrossRef]

Adv. Mater. (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt. (2)

Chip Scale Rev. (1)

J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).

Electron. Lett. (1)

P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000).
[CrossRef]

S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004).
[CrossRef]

T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998).
[CrossRef]

S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001).
[CrossRef]

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (1)

A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Opt. Lett. (1)

Other (5)

W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

M. L. Jones, “Design of normal-incidence waveguide-embedded phase gratings for optical interconnects in multi-chip modules,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1995).

A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).

W. DuMouchel, F. O’Brien, “Integrating a robust option into a multiple regression computing environment,” in Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk, L. Malone, eds. (American Statistical Association, Alexandria, Va.1989), pp. 297–301.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Grating-to-grating coupling.

Fig. 2
Fig. 2

Angular selectivity measurements of the top substrate grating before channel patterning. A peak input coupling efficiency of 59% is visible. Each minimum corresponds to Bragg coupling of the incident test beam to a waveguide mode supported by the grating film.

Fig. 3
Fig. 3

Angular selectivity measurements of slab Omnidex grating both before and after encapsulation in Avatrel. An increase of 14% in the peak input coupling efficiency is visible following encapsulation.

Fig. 4
Fig. 4

(a) Optical profilometer scan of Avatrel-encapsulated volume grating channels. The nature of Avatrel is such that a nonplanar topology results when the material is spun atop a nonplanar substrate. The thickness of the interconnect increases in the grating region by the thickness of the applied Avatrel film. (b) Diagram of optical profilometer scan data.

Fig. 5
Fig. 5

Top-view micrograph of a substrate with grating-in-the-waveguide optical interconnect channels G1–G8. Dashed circle, area encompassed by the He–Ne test beam for location 1 depicted in Fig. 6.

Fig. 6
Fig. 6

Angular selectivity measurements of the top substrate grating following channel patterning. The magnitude of the minimum is reduced because of the small (3%) overlap between the He–Ne test beam and the patterned grating channels.

Fig. 7
Fig. 7

Grating-to-grating coupling efficiency measurement configuration. The top substrate is suspended above the bottom substrate during measurement by the rotation arm such that the relative lateral, longitudinal, and vertical positions of the top substrate are controlled with micrometer resolution. The relative roll and pitch of the top substrate are controlled to within 0.02°, whereas the relative yaw is minimized by alignment of waveguides on both substrates through visual inspection with the translatable microscope.

Fig. 8
Fig. 8

Image of top and bottom substrates taken during pitch initialization. The relative angular position of the top substrate is initialized to ∼0°.

Fig. 9
Fig. 9

Grating-to-grating coupling when the patterned top substrate is incremented longitudinally to couple optically to the bottom patterned substrate. The vertical separation between substrates is 500 μm.

Fig. 10
Fig. 10

Grating-to-grating coupling when the top substrate is 5 mm above the bottom substrate. Note the absence of unfocused background light beneath the waveguide.

Fig. 11
Fig. 11

Grating-to-grating angular selectivity measurement data corresponding to an unpatterned bottom substrate with an unencapsulated grating coupled optically to an unpatterned top substrate with an encapsulated grating (case 1 of Table 3). Each data set corresponds to a different test location on the top substrate. The peak grating-to-grating coupling efficiency is 31%.

Fig. 12
Fig. 12

Grating-to-grating angular selectivity measurement data corresponding to an unpatterned bottom substrate with an unencapsulated grating coupled optically to an unpatterned top substrate with an unencapsulated grating (case 2 of Table 3). The peak grating-to-grating coupling efficiency is 28.4%. The angular selectivity data of the top substrate when it is tested with the He–Ne test beam is also shown to demonstrate the increased angular tolerance with respect to pitch angle of incidence that results during grating-to-grating coupling.

Tables (3)

Tables Icon

Table 1 Summary of Grating Coupling Coefficients and Lengths for Bottom and Top Test Substratesa

Tables Icon

Table 2 Summary of Propagation Loss Metrics for Avatrel Waveguide Segments Leading to Diffraction Gratings Located on the Bottom and Top Test Substratesa

Tables Icon

Table 3 Summary of Grating-to-Grating Coupling Efficiency Measurements

Metrics