Abstract

Fluorescence has been suggested as a method with which to detect and identify bacterial spores. To better understand the nature of the fluorescence signal, we observed the intrinsic steady-state fluorescence and phosphorescence spectra of Bacillus globigii (BG) in both dried and aqueous forms. In vitro, dried, and suspension forms of BG were measured at room temperature in 300–600-nm excitation wavelengths. Also, the phosphorescence of dry BG spores was measured at room temperature at 300–600-nm excitation wavelengths. The wet BG spores exhibited a strong maximum in their fluorescence spectrum, with the peak excitation wavelength near 300 nm and emission wavelength near 400 nm. When the BG was dried, this peak shifted to an approximately 450-nm excitation maximum and an 500-nm emission maximum. The difference between the wet and the dry spore fluorescence spectra cannot be explained by the phosphorescence of the dry spores. Other changes must take place when the spores are wet to account for the large changes observed in the spectrum.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
    [CrossRef]
  2. T. M. Rossi, I. M. Warner, “Pattern-recognition of two-dimensional fluorescence data using cross-correlation analysis,” Appl. Spectrosc. 39, 949–959 (1985).
    [CrossRef]
  3. L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
  4. M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
    [CrossRef]
  5. B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
    [CrossRef] [PubMed]
  6. B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
    [CrossRef]
  7. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Tanguay, S. L. Suib, “Steady state and decay characteristic of protein tryptophan fluorescence from live bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
    [CrossRef]
  8. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
    [CrossRef]
  9. I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
    [CrossRef] [PubMed]
  10. L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).
  11. G. G. Guilbault, Fluorescence: Theory, Instrumentation and Practice (Marcel Dekker, New York, 1967).
  12. D. M. Hercules, Fluorescence and Phosphorescence Analysis: Principles and Applications (Interscience, New York, 1966).
  13. C. E. White, R. J. Argauer, Fluorescence Analysis: A Practical Approach (Marcel Dekker, New York, 1970).
  14. J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  16. D. Eastwood, ed., New Directions in Molecular Luminescence, Special Tech. Publ.82 (American Society for Testing and Materials, Philadelphia, Pa., 1983).
  17. M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995).
    [CrossRef] [PubMed]
  18. G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
    [CrossRef] [PubMed]
  19. F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).
  20. P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
  21. A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
    [CrossRef] [PubMed]
  22. R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
    [CrossRef] [PubMed]
  23. B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970).
    [CrossRef]
  24. M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
    [CrossRef] [PubMed]
  25. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
    [CrossRef] [PubMed]

2003 (1)

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

2000 (2)

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

1998 (1)

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

1995 (1)

M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995).
[CrossRef] [PubMed]

1994 (2)

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

1993 (1)

1991 (1)

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

1987 (2)

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
[CrossRef]

1986 (1)

1985 (2)

T. M. Rossi, I. M. Warner, “Pattern-recognition of two-dimensional fluorescence data using cross-correlation analysis,” Appl. Spectrosc. 39, 949–959 (1985).
[CrossRef]

J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

1979 (1)

I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
[CrossRef] [PubMed]

1970 (1)

B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970).
[CrossRef]

1967 (2)

R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
[CrossRef] [PubMed]

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

1957 (1)

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).

Argauer, R. J.

C. E. White, R. J. Argauer, Fluorescence Analysis: A Practical Approach (Marcel Dekker, New York, 1970).

Branlant, G.

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

Britt, D.

Bronk, B. V.

B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Carlone, G. M.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Chou-pong, P.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Coburn, J. T.

J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Dalterio, R. A.

Deitz, V. R.

R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
[CrossRef] [PubMed]

Driks, A.

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Gabellieri, E.

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

Gonnelli, M.

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995).
[CrossRef] [PubMed]

Guilbault, G. G.

G. G. Guilbault, Fluorescence: Theory, Instrumentation and Practice (Marcel Dekker, New York, 1967).

Hercules, D. M.

D. M. Hercules, Fluorescence and Phosphorescence Analysis: Principles and Applications (Interscience, New York, 1966).

Hollis, D.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Huber, D. M.

J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Leighton, T. J.

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

Lewis, J. C.

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

Lytle, F. E.

J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Marshall, B. J.

B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970).
[CrossRef]

Moss, C. W.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Munro, I.

I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
[CrossRef] [PubMed]

Murrell, W. G.

B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970).
[CrossRef]

Neihof, R.

R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
[CrossRef] [PubMed]

Nelson, W. H.

O’Haver, T. C.

J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).

Ossoff, R. H.

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Paidhungat, M.

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Patonay, G.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Pecht, I.

I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
[CrossRef] [PubMed]

Plikaytis, B. D.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

Price, P. B.

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

Rahuel-Clemont, S.

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

Reinisch, L.

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Rossi, T. M.

Schulman, S. G.

J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).

Setlow, B.

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Setlow, P.

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Smith, D.

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

Sorrel, M. J.

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Spector, B. C.

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

Sperry, J. F.

Strambini, G. B.

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995).
[CrossRef] [PubMed]

Stryer, L.

I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
[CrossRef] [PubMed]

Suib, S. L.

Tanguay, J. F.

Teale, F. W. J.

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).

Thompson, J. K.

R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
[CrossRef] [PubMed]

Tribble, J.

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

Van de Merwe, W. P.

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Warner, I. M.

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

T. M. Rossi, I. M. Warner, “Pattern-recognition of two-dimensional fluorescence data using cross-correlation analysis,” Appl. Spectrosc. 39, 949–959 (1985).
[CrossRef]

Weber, G.

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).

Werkhaven, J. A.

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Westphal, A. J.

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

Wheeler, K. E.

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

White, C. E.

C. E. White, R. J. Argauer, Fluorescence Analysis: A Practical Approach (Marcel Dekker, New York, 1970).

Winefordner, J. D.

J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).

Anal. Biochem. (1)

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Appl. Bacteriol. (1)

B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970).
[CrossRef]

Appl. Spectrosc. (4)

Biochem. J. (1)

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).

Biochemistry (1)

M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995).
[CrossRef] [PubMed]

Biophys J. (1)

G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998).
[CrossRef] [PubMed]

Biophys. J. (1)

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Clin. Chem. (1)

P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).

J. Bacteriol. (1)

M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000).
[CrossRef] [PubMed]

Laryngoscope (2)

L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).

B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Nature (1)

R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979).
[CrossRef] [PubMed]

A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003).
[CrossRef] [PubMed]

Other (6)

G. G. Guilbault, Fluorescence: Theory, Instrumentation and Practice (Marcel Dekker, New York, 1967).

D. M. Hercules, Fluorescence and Phosphorescence Analysis: Principles and Applications (Interscience, New York, 1966).

C. E. White, R. J. Argauer, Fluorescence Analysis: A Practical Approach (Marcel Dekker, New York, 1970).

J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

D. Eastwood, ed., New Directions in Molecular Luminescence, Special Tech. Publ.82 (American Society for Testing and Materials, Philadelphia, Pa., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic showing the geometry of dry spores mounted on tape and placed in a fluorometer.

Fig. 2
Fig. 2

A, Luminescence profile of dry BG spores. The intensity is equally divided by 15 contour lines. The greatest intensity is shaded darkest. The large ridge along the y axis is from scattered or reflected light. B, Fluorescence profile of the tape substrate. The intensity scales in A and B are the same. C, Luminescence profile of dry BG spores (same data as shown in A) plotted as a more-conventional excitation-emission matrix.

Fig. 3
Fig. 3

A, Luminescence profile of BG spores in a water suspension. The intensity is equally divided by 15 contour lines. The greatest intensity is shaded darkest, and the least intensity is white. B, Luminescence profile of BG spores in a water suspension (same data as shown in A) plotted as a more-conventional excitation-emission matrix.

Fig. 4
Fig. 4

A, Phosphorescence profile of dry BG spores. The intensity is equally divided by 15 contour lines. The greatest intensity is shaded darkest, and the least intensity is white. B, Fluorescence profile of the tape substrate. The intensity scales in A and B are the same. C, Phosphorescence profile of dry BG spores (same data as shown in A) plotted as a more-conventional excitation-emission matrix.

Fig. 5
Fig. 5

A, Difference spectrum when the luminescence from the wet spores is subtracted from the luminescence of the dried spores. B, Difference spectrum when 0.5 the intensity of the wet spores is subtracted from the luminescence of the dried spores. C, Difference spectrum when 0.25 the intensity of the wet spores is subtracted from the luminescence of the dried spores. The scales are the same in all three figures, with 30 contours equally spaced on the positive and negative sides of zero. Negative values (holes) are shown with a minus in A. Positive values (hills) are shown with pluses.

Metrics