Abstract

High-order multiphoton excitation processes are becoming a reality for fluorescence imaging and phototherapy treatment because they afford minimization of scattered light losses and a reduction of unwanted linear absorption in the living organism transparency window, making them less susceptible to photodamage, while improving the irradiation penetration depth and spatial resolution. We report the four-photon-excited fluorescence emission of (7-benzothiazol-2-yl-9,-didecylfluoren-2-yl)-diphenylamine in hexane and its four-photon absorption cross section σ4′ = 8.1 × 10-109 cm8 s3 photon-3 for the transition S0 → S1 when excited at 1600 nm with a tunable optical parametric generator (OPG) pumped by picosecond laser pulses. When pumped at 1200 nm, three-photon absorption was observed, corresponding to the same transition.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Goeppert-Mayer, “Uber Elementarakte mit zwei quantensprungen,” Ann. Physik. 9, 273–294 (1931).
    [CrossRef]
  2. D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  4. G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
    [CrossRef]
  5. J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
    [CrossRef]
  6. M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
    [CrossRef] [PubMed]
  7. S. P. Schilders, M. Gu, “Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation,” Appl. Opt. 38, 720–723 (1999).
    [CrossRef]
  8. J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
    [CrossRef]
  9. L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25, 320–322 (2000).
    [CrossRef]
  10. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
    [CrossRef] [PubMed]
  11. D. M. Friedrich, “Tensor pattern and polarization ratios for three-photon transitions in fluid media,” J. Chem. Phys. 75, 3258–3268 (1981).
    [CrossRef]
  12. S. G. He, J. D. Bhawalkar, P. N. Prasad, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995).
    [CrossRef] [PubMed]
  13. G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang, “Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS,” Appl. Opt. 41, 1120–1123 (2000).
    [CrossRef]
  14. M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996).
    [CrossRef] [PubMed]
  15. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
    [CrossRef] [PubMed]
  16. I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
    [CrossRef]
  17. I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
    [CrossRef]
  18. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
    [CrossRef] [PubMed]
  19. R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
    [CrossRef]
  20. G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
    [CrossRef] [PubMed]
  21. F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).
  22. R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
    [CrossRef]
  23. V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
    [CrossRef]
  24. I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
    [CrossRef]
  25. F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
    [CrossRef]
  26. I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
    [CrossRef]
  27. K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
    [CrossRef]
  28. J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
    [CrossRef]
  29. K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
    [CrossRef]
  30. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  31. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chaps. 4 and 8.

2003 (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

2002 (4)

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
[CrossRef]

2000 (3)

1999 (2)

S. P. Schilders, M. Gu, “Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation,” Appl. Opt. 38, 720–723 (1999).
[CrossRef]

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

1998 (2)

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

1997 (2)

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

1996 (4)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
[CrossRef]

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996).
[CrossRef] [PubMed]

1995 (2)

S. G. He, J. D. Bhawalkar, P. N. Prasad, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

1990 (2)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1985 (1)

V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
[CrossRef]

1981 (1)

D. M. Friedrich, “Tensor pattern and polarization ratios for three-photon transitions in fluid media,” J. Chem. Phys. 75, 3258–3268 (1981).
[CrossRef]

1975 (1)

I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
[CrossRef]

1967 (1)

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

1966 (1)

F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).

1931 (1)

M. Goeppert-Mayer, “Uber Elementarakte mit zwei quantensprungen,” Ann. Physik. 9, 273–294 (1931).
[CrossRef]

Albota, M.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Bahlmann, K.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

Bavister, B. D.

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

Bedwhorth, P. V.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Belfield, K. D.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
[CrossRef]

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Beljnne, D.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

S. G. He, J. D. Bhawalkar, P. N. Prasad, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995).
[CrossRef] [PubMed]

Blanchard-Desce, M.

Bondar, M. V.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chaps. 4 and 8.

Bredas, J. L.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Catalano, I. M.

I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
[CrossRef]

Chen, C. T.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Chott, M.

F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).

Cingolani, A.

I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
[CrossRef]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Ehrlich, J. E.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Engelhardt, P.

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

Friedrich, D. M.

D. M. Friedrich, “Tensor pattern and polarization ratios for three-photon transitions in fluid media,” J. Chem. Phys. 75, 3258–3268 (1981).
[CrossRef]

Friedrich, L.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Fu, J. Y.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Goeppert-Mayer, M.

M. Goeppert-Mayer, “Uber Elementarakte mit zwei quantensprungen,” Ann. Physik. 9, 273–294 (1931).
[CrossRef]

Gryczynski, I.

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
[CrossRef]

Gryczynski, Z.

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

Gu, M.

Guenter, A. H.

V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Hales, J. M.

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Hanus, J.

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).

He, G. S.

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

He, S. G.

Heikal, A. A.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Hell, S. W.

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

Hess, S. E.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Jiang, M.

Kano, H.

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

Kogej, T.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Lakowicz, J. R.

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
[CrossRef]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Lee, J. Y. S.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Levin, M. D.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Lin, T.

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

Liu, M.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Mafra, A.

I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
[CrossRef]

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Malak, H.

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

Mansour, K.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Marder, S. R.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Markowics, P. P.

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

McCord-Maughon, D.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Menard, M.

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Mertz, J.

Miles, P.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Mitra, S. S.

V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
[CrossRef]

Morales, A. M.

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Moreaux, L.

Mourad, W.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
[CrossRef]

Naskrecki, R.

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Nathan, V.

V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
[CrossRef]

Ng, D.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Patell, R.

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

Perry, J. W.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Piszczek, G.

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

Polyakov, S.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Pommeret, S.

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Pradere, F.

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).

Prasad, P. N.

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

S. G. He, J. D. Bhawalkar, P. N. Prasad, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995).
[CrossRef] [PubMed]

Przhonska, O. V.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

Puthoff, H.

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Rockel, H.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Rumi, M.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sandre, O.

Sasabe, H.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Schafer, K. J.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
[CrossRef]

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Schilders, S. P.

Schott, M.

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

Schrader, M.

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

Shao, Z.

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shim, H.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Soini, A.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

Squirel, J. M.

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

Stegeman, G. I.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Stryland, E. W.

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Subramaniam, G.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Szmacinski, H.

I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
[CrossRef]

Tian, M.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Van der Meulen, P.

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Vigneron, G.

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Wada, T.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Wang, D.

Wang, X.

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

White, J. G.

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Wokosin, D. L.

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

Wu, X. L.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Xu, C.

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Xu, X. L.

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

Yoshimo, F.

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

Zao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Zhou, G.

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Ann. Physik. (1)

M. Goeppert-Mayer, “Uber Elementarakte mit zwei quantensprungen,” Ann. Physik. 9, 273–294 (1931).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Biophys. J. (2)

I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997).
[CrossRef]

I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996).
[CrossRef]

C. R. Acad. Sci. Ser. A (1)

F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Biomed. Opt. (1)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967).
[CrossRef]

D. M. Friedrich, “Tensor pattern and polarization ratios for three-photon transitions in fluid media,” J. Chem. Phys. 75, 3258–3268 (1981).
[CrossRef]

J. Fluoresc. (1)

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000).
[CrossRef]

J. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002).
[CrossRef]

J. Phys. Chem. (1)

I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002).
[CrossRef]

JOSA B (1)

V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985).
[CrossRef]

Nature (1)

G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[CrossRef] [PubMed]

Nature Biotechnology (1)

J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999).
[CrossRef]

Opt. Commun. (1)

R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998).
[CrossRef]

Opt. Lett. (3)

Science (6)

D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996).
[CrossRef]

M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Solid State Commun. (1)

I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chaps. 4 and 8.

J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Absorption (─) and emission (—) spectra of a solution of NPH2Bz-hexane at low concentration (2 × 10-6 M). The inset shows the molecular structure of NPH2Bz. The arrows represent the number of photons involved in the process at the particular excitation wavelengths. (b) Jablonski diagram of NPH2Bz with possible single and multiphoton transitions between the ground state S0 and the first and second exited states, S1 and S2, respectively. The labels denote the wavelength corresponding to the pump wavelength, and the number of arrows represent the number of photons involved in the process at the particular excitation wavelengths.

Fig. 2
Fig. 2

Normalized fluorescence emission spectrum of a solution of NPH2Bz-hexane 9.8 × 10-3 M, induced with different pump wavelengths (λp): 600 (▩), 800 (■), 1200 (■), and 1600 nm (▩).

Fig. 3
Fig. 3

Fluorescence emission intensity versus incident intensity induced at 1200 (◆) and 1600 nm (■) pump wavelengths. A NPH2Bz-hexane solution (9.8 × 10-3 M) was used. Solid lines are the best linear fits with slope 2.85 for 1200 nm and 4.15 for 1600 nm.

Fig. 4
Fig. 4

Open-aperture Z-scan in NPH2Bz-hexane solution (9.8 × 10-3 M), taken at two different input energies: 380 nJ (□) and 400 nJ (●). Solid curves are the best theoretical fittings with Eq. (3) for the change in transmittance for 4PA.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dIz, r, tdz=-α4Iz, r, t4,
Iz, r, t=Iz=0, r, t1+3α4zI3z=0, r, t1/3,
TL=1π31+3α4LI3z=0011x -ln x×lnX4x+RΔdx,X4x=x1+3α4zI3z=01/3+1+3α4zI3z=0x3+11/3,RΔ=ln1+Δx+Δx21/21+Δx+13arctan2Δx+13-π63,Δx=11+3α4zI3z=0x-31/3,
wZ=w01+Z2/Z021/2,
IZ=2E0/ππ tpwZ
σ4=α4NAd0103hcλ3

Metrics