Abstract

We report an experimental study of enhanced optical birefringence in silicon thin films on glass substrates. Form anisotropy is introduced as an atomic-scale morphological structure through dynamic control of growth geometry. The resulting birefringence is large compared with naturally anisotropic crystals and is comparable to two-dimensional photonic crystals. The films are fabricated with serial bideposition onto a substrate held at a fixed tilt angle relative to the impinging vapor. Films were analyzed by spectroscopic ellipsometry and scanning electron microscopy, the latter clearly revealing form anisotropy in a morphology of bunched columns perpendicular to the deposition plane with dimensions of hundreds of nanometers and smaller. The observed linear birefringence varies with wavelength and tilt angle, with a maximum of 0.4 at a 630-nm wavelength and 0.25 at 1500 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hodgkinson, Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
    [CrossRef]
  2. I. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
    [CrossRef]
  3. I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
    [CrossRef]
  4. S. Leonard, H. van Driel, A. Birner, U. Gosele, P. Villeneuve, “Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides,” Opt. Lett. 25, 1550–1552 (2000).
    [CrossRef]
  5. S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).
  6. K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  7. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  8. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
    [CrossRef] [PubMed]
  9. M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).
  10. A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996).
    [CrossRef] [PubMed]
  11. I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [CrossRef]
  12. K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
    [CrossRef]
  13. K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
    [CrossRef]
  14. K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974).
    [CrossRef]
  15. H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
    [CrossRef]
  16. M. Cohen, “Anisotropy in permalloy films evaporated at grazing incidence,” J. Appl. Phys. 32, 875–885 (1961).
    [CrossRef]
  17. R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
    [CrossRef]
  18. K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
    [CrossRef]
  19. H. Tompkins, W. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).
  20. B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
    [CrossRef]
  21. D. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 635–679 (1935).
  22. G. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
    [CrossRef]
  23. R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
    [CrossRef]
  24. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
    [CrossRef]

2001 (1)

S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).

2000 (2)

1999 (3)

I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[CrossRef]

I. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
[CrossRef]

1998 (2)

1997 (1)

K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

1996 (1)

1995 (1)

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

1994 (1)

H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[CrossRef]

1993 (1)

R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

1992 (1)

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).

1989 (2)

T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
[CrossRef] [PubMed]

G. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

1984 (1)

R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

1974 (1)

K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974).
[CrossRef]

1961 (1)

M. Cohen, “Anisotropy in permalloy films evaporated at grazing incidence,” J. Appl. Phys. 32, 875–885 (1961).
[CrossRef]

1935 (1)

D. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 635–679 (1935).

Birner, A.

Brett, M.

K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Broer, D.

K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
[CrossRef]

Bruggeman, D.

D. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 635–679 (1935).

Cohen, M.

M. Cohen, “Anisotropy in permalloy films evaporated at grazing incidence,” J. Appl. Phys. 32, 875–885 (1961).
[CrossRef]

Dew, S.

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Echlin, P.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Fiori, C.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Florescu, M.

S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).

Friedrich, L.

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Giri, A.

R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Goldstein, J. I.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Gosele, U.

Hale, J.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Hazel, J.

Herzinger, G.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Hirota, J.

K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974).
[CrossRef]

Hodgkinson, I.

Ianno, N.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Jänchen, H.

John, S.

S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).

Johs, B.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Joy, D. C.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Kaiser, N.

Knight, B.

Kuwahara, K.

K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974).
[CrossRef]

Lakhtakia, A.

Leonard, S.

Lifshin, E.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Lodder, C.

H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[CrossRef]

Lyman, C. E.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

McGahan, W.

H. Tompkins, W. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).

Messier, R.

R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Motohiro, T.

Newbury, D. E.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Robbie, K.

I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Romig, A. D.

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

Roy, R.

R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Sit, J.

K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Smith, G.

G. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

Smy, T.

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Suzuki, M.

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).

Taga, Y.

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).

T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
[CrossRef] [PubMed]

Tait, R.

R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Tiwald, T.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Tompkins, H.

H. Tompkins, W. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).

van Driel, H.

van Kranenburg, H.

H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[CrossRef]

Villeneuve, P.

Woollam, J.

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

Wu, Q.

Wu, Q. H.

Zuber, A.

Ann. Phys. (Leipzig) (1)

D. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 635–679 (1935).

Appl. Opt. (5)

J. Appl. Phys. (2)

M. Cohen, “Anisotropy in permalloy films evaporated at grazing incidence,” J. Appl. Phys. 32, 875–885 (1961).
[CrossRef]

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).

J. Opt. (1)

S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).

J. Vac. Sci. Technol. A (4)

K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

I. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974).
[CrossRef]

Mater. Sci. Eng. R (1)

H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[CrossRef]

Nature (London) (1)

K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999).
[CrossRef]

Opt. Commun. (1)

G. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

Opt. Lett. (1)

Thin Solid Films (1)

R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Other (4)

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992).
[CrossRef]

H. Tompkins, W. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).

B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001).
[CrossRef]

I. Hodgkinson, Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Physical schematic of the evaporator used in this study. The vapor source is approximately 25 mm in diameter and 500 mm directly below the substrate.

Fig. 2
Fig. 2

Ellipsometry of experimental and model fitted data for a bideposited film of silicon on glass at a tilt angle of 60 deg.

Fig. 3
Fig. 3

Thickness of bideposited and rapid-rotation films as a function of tilt angle for a constant deposited thickness measured on the quartz thickness monitor. The theoretical vapor flux arriving at the substrate is proportional to the cosine of the tilt angle (dotted curve). The difference between the predicted cosine dependence and the observed thicknesses is a result of nanometer-scale porosity.

Fig. 4
Fig. 4

Cross-sectional SEM image of a silicon film bideposited at a 60-deg tilt. The substrate and film were cleaved along the deposition plane and imaged perpendicular to it. (The vapor arrives alternately from the left and the right.)

Fig. 5
Fig. 5

Optical indices and extinction coefficients for a bideposited film of silicon on glass at a tilt angle of 60 deg.

Fig. 6
Fig. 6

Measured index of refraction variation with wavelength (dispersion) for eight different substrate tilt angles. Polarization direction x is parallel to both the deposition plane and the substrate surface plane. The perpendicular index, direction y, follows the same trend, but with an index that is always larger.

Fig. 7
Fig. 7

Measured birefringence of bideposited films at selected wavelengths. The curves are the third-degree polynomial fits to each set. Birefringence of six-sided deposited films (60 rotations) are also shown.

Fig. 8
Fig. 8

Maximum measured birefringence of bideposited films at varying substrate tilt angles.

Fig. 9
Fig. 9

Plan view scanning electron microscope image of a bideposited silicon film (80-deg substrate tilt); inset is a two-dimensional FFT of this image, clearly indicating the structural anisotropy of the thin-film nanostructure.

Fig. 10
Fig. 10

Plan view SEM scanning electron microscope image of a silicon film (80-deg substrate tilt) deposited onto a rapidly rotating substrate; inset is a two-dimensional FFT of this image, where the rotational symmetry indicates the absence of in-plane anisotropy in the structure.

Fig. 11
Fig. 11

Plan view scanning electron microscope image of a bideposited silicon film (80-deg substrate tilt). The central particle is presumed to be a dust particle, now silicon coated, that created a geometric shadow during deposition. Film deposition occurred alternately from the right and left sides.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanΨexpiΔ=ρ=Rp/Rs,

Metrics