Abstract

Fluorescence correlation spectroscopy is a valuable tool in many scientific disciplines. In particular, such a spectroscopic technique has received a great deal of attention because of its remarkable potential for single-molecule detection. It is understood, however, that quantitative measurements can be considered reliable as long as molecular photophysics has been well characterized. To that end, molecular saturation and probe volume effects, which can worsen experimental accuracy, are treated here. These phenomena are adequately incorporated into the well-known three-dimensional Gaussian approximation by a novel method applied to interpret saturated fluorescence signals [Opt. Lett. 28, 2016 (2003)]. Comparisons with literature data are given to show the improvements of the suggested method compared with other approaches.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription