Abstract

A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond–nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond–nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski, D. A. Cremers, eds, Laser-induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
    [CrossRef]
  4. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  5. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
    [CrossRef]
  6. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
    [CrossRef]
  7. K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).
  8. L. Dudreagne, P. Adam, J. Amoroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  9. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
    [CrossRef]
  10. A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
    [CrossRef]
  11. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  12. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  13. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
    [CrossRef]
  14. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  15. J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  16. H. Wiggenhauser, D. Schaurich, G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
    [CrossRef]
  17. M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
    [CrossRef]
  18. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  19. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals: Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
    [CrossRef]
  20. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
    [CrossRef]
  21. H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
    [CrossRef]
  22. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
    [CrossRef]
  23. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef]
  24. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
    [CrossRef]
  25. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
    [CrossRef]
  26. R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
    [CrossRef] [PubMed]
  27. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
    [CrossRef]
  28. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  29. L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
    [CrossRef]
  30. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  31. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
    [CrossRef]
  32. D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
    [CrossRef]
  33. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  34. J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
    [CrossRef] [PubMed]
  35. A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
    [CrossRef] [PubMed]
  36. M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
    [CrossRef]
  37. M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
    [CrossRef]
  38. A. D. Zweig, T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
    [CrossRef]
  39. D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
    [CrossRef]
  40. A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).
  41. A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
    [CrossRef]
  42. W. S. Budi, H. Suyanto, H. Kurniawan, M. O. Tjia, K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-switched Nd:YAG laser at low pressures,” Appl. Spectrosc. 53, 719–730 (1999).
    [CrossRef]

2003 (2)

2002 (5)

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
[CrossRef]

2001 (8)

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

2000 (6)

1999 (1)

1998 (2)

1997 (3)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
[CrossRef]

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

1996 (3)

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

1995 (1)

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

1993 (1)

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

1992 (3)

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals: Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
[CrossRef]

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

A. D. Zweig, T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
[CrossRef]

1991 (1)

1989 (1)

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

1988 (1)

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

1987 (1)

1962 (1)

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Adam, P.

Al-Dwayyan, A. S.

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

Al-Salhi, M. S.

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

Amoroux, J.

Angel, S. M.

J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Anglos, D.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

Azzeer, A. M.

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

Bartnicki, E.

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

Bauerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Betancourt, P. P.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

Bonlie, J.

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

Brech, F.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Brust, J.

Budi, W. S.

Bustamante, M. F.

M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
[CrossRef]

Carter, J. C.

J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Cha, H. K.

Colston, B. W.

Cook, R. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Cremers, D. A.

Cross, L.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Davies, C. M.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Detalle, V.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

Deutsch, T. F.

A. D. Zweig, T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
[CrossRef]

Devaux, D.

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

Dudreagne, L.

Eland, K. L.

Ertmer, W.

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

Fabbro, R.

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

Feng, S.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Ferrence, S. C.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

Ferrero, J. C.

M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
[CrossRef]

Ferris, M. J.

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Gatti, M.

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

Goode, S. R.

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Harith, M. A.

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Hergenroder, R.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

Joseph, M. R.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Kagawa, K.

Kamal, A. M.

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

Kim, G. H.

Knight, A. K.

Kurniawan, H.

Lai, T.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Lee, G. H.

Lee, J. M.

Lee, Y. I.

Leis, F.

Lohmann, S.

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

Lubatschowski, H.

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

Majidi, V.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Mao, S. S.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Mao, X.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Margetic, V.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Mateo, M.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

Matsuta, H.

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Melessanaki, K.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Monts, D. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Niemax, K.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

Noll, R.

Olmes, A.

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

Palleschi, V.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

Park, M. C.

Pearman, B.

Pender, J.

Peter, L.

Price, D. F.

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

Rai, A. K.

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
[CrossRef]

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Rigsby, J. T.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Rinaldi, C. A.

M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Sabsabi, M.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

Salvetti, A.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

Scaffidi, J.

Schaurich, D.

H. Wiggenhauser, D. Schaurich, G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
[CrossRef]

Scherbarth, N. L.

Sdorra, W.

Singh, D. P.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

Singh, J. P.

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
[CrossRef]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Smith, B. W.

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sneddon, J.

Song, K.

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

St-Onge, L.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Stratis, D. N.

Sturm, V.

Su, C. F.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Sullivan, A.

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

Sun, Q.

Suyanto, H.

Telle, H. H.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Teng, Y. Y.

Thiem, T. L.

Tjia, M. O.

Tollier, L.

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

Tran, M.

Tropiano, G.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

Uebbing, J.

Vaselli, M.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

Wachter, J. R.

Wagatsuma, K.

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

White, W. E.

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

Wiggenhauser, H.

H. Wiggenhauser, D. Schaurich, G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
[CrossRef]

Wilsch, G.

H. Wiggenhauser, D. Schaurich, G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
[CrossRef]

Winefordner, J. D.

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Yueh, F. Y.

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
[CrossRef]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Zweig, A. D.

A. D. Zweig, T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
[CrossRef]

Anal. Chem. (2)

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Optics (1)

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
[CrossRef]

Appl. Phys. B (3)

A. D. Zweig, T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
[CrossRef]

A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).

A. Olmes, S. Lohmann, H. Lubatschowski, W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
[CrossRef]

Appl. Spectrosc. (17)

W. S. Budi, H. Suyanto, H. Kurniawan, M. O. Tjia, K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-switched Nd:YAG laser at low pressures,” Appl. Spectrosc. 53, 719–730 (1999).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
[CrossRef]

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

L. Dudreagne, P. Adam, J. Amoroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals: Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
[CrossRef]

Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
[CrossRef]

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
[CrossRef]

Crit. Rev. Anal. Chem. (2)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Fresnius J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Glass Technol. (1)

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

J. Appl. Phys (1)

D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
[CrossRef]

NDT & E Int. (1)

H. Wiggenhauser, D. Schaurich, G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
[CrossRef]

Opt Lett. (1)

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

Opt. Commun. (2)

M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
[CrossRef]

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
[CrossRef]

Spectrochim. Acta Part B (6)

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

M. F. Bustamante, C. A. Rinaldi, J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[CrossRef]

Other (2)

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

L. J. Radziemski, D. A. Cremers, eds, Laser-induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical dual-pulse LIBS setup. A pulse from one laser (A) produces an air spark parallel to and millimeters above the sample surface prior to an ablative pulse from a second laser (B), with the interpulse delay controlled by a timing generator (C). Use of a dichroic mirror (D) allows ablative pulse focusing and plasma emission collection with a light guide (E) along the same optical axis, making focusing of collection optics a trivial task. Plasma emission is then spectrally resolved with a spectrograph (F) and analyte emission is temporally separated from continuum emission by adjusting the gate delay for the ICCD (G). In these particular experiments, the preablation air spark was generated with a 10-mJ, 100-fs, 800-nm Ti:sapphire pulse, and ablation was with a 150-mJ, 5-ns, 1064-nm Nd:YAG pulse.

Fig. 2
Fig. 2

Spatial and temporal dependence of oxygen emission in fs–ns dual-pulse LIBS of air. A clear ring structure (a) is generated when mapping femtosecond–nanosecond dual-pulse spatial interactions in two dimensions (values indicate atomic emission intensity relative to that seen for fully optimized nanosecond single-pulse LIBS). Additional two-dimensional slices of the volume probed in this work (not shown) indicate that the rings noted above correspond to a three-dimensional shell structure. (Note that the x and y coordinates are arbitrary, and that the center of the ring structure corresponds to direct overlap of the femtosecond and nanosecond plasmas.) (b) Examination of the temporal dependence of the atomic oxygen lines at 777 nm upon t d shows an initial rapid reduction upon introduction of the femtosecond air spark, followed by a period during which nanosecond spark formation was not possible. Oxygen (and nitrogen, not shown) atomic emission intensity slowly begins to increase at t d = 20 μs, finally returning to nanosecond single-pulse levels at t d = 80 μs. Error bars represent two standard deviations.

Fig. 3
Fig. 3

Spatial dependence of copper emission in femtosecond–nanosecond dual-pulse LIBS of brass. Spatial mapping of copper atomic emission intensity at 510 (not shown), 515 (not shown) and 521 nm generates a series of two-dimensional contours at femtosecond air spark heights of (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, and (e) 1.0 mm above the sample surface, with values indicating atomic emission enhancement with respect to that seen for fully optimized nanosecond single-pulse LIBS. As in the case of the femtosecond–nanosecond dual-pulse LIBS of air map (Fig. 2) and that of aluminum (Fig. 4), “zero” in the coordinate system is arbitrary. The center of interspark overlap in these contour plots is at (x,y) = (0, 0.75), with the z coordinate equal to the femtosecond air spark height above the sample surface.

Fig. 4
Fig. 4

Spatial dependence of aluminum emission in femtosecond–nanosecond dual-pulse LIBS of bulk aluminum. Spatial mapping of aluminum atomic emission intensity at 394 (not shown) and 396 nm generates a series of two-dimensional contours at femtosecond air spark heights of (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, and (e) 1.0 mm above the sample surface, with values indicating atomic emission enhancement with respect to that seen for fully optimized nanosecond single-pulse LIBS. As in the case of the femtosecond–nanosecond dual-pulse LIBS of air map (Fig. 2) and that of copper in brass (Fig. 3), “zero” in the coordinate system is arbitrary. The center of interspark overlap in these contour plots is at (x,y) = (0, 0.75), with the z coordinate equal to the femtosecond air spark height above the sample surface.

Fig. 5
Fig. 5

Temporal dependence of ablated analyte atomic emission upon t d . Atomic emission for both copper in brass [(a), 521.820 nm] and aluminum in bulk aluminum [(b), 396.152 nm] shows rapid enhancement upon introduction of the femtosecond air spark in femtosecond–nanosecond dual-pulse LIBS. Aluminum (b) shows a much less well-defined return to nanosecond single-pulse atomic emission levels than copper (a), with a series of large spikes in emission intensity at interpulse delays between -100 and -500 μs.

Fig. 6
Fig. 6

Temporal dependence of atmospheric and ablated analyte atomic emission on t d . The initial rapid reduction in oxygen (a) and nitrogen (not shown) atomic emission in femtosecond–nanosecond dual-pulse LIBS coincides with large increases in aluminum (b) and copper (c) emission. Although the return of oxygen atomic emission to its nanosecond single-pulse level correlates only weakly with the return of aluminum emission to its nanosecond single-pulse level (b), copper atomic emission enhancement (c) correlates very strongly with oxygen emission reductions (dashed curve) in the orthogonal femtosecond–nanosecond dual-pulse configuration.

Metrics