Abstract

A highly efficient, diode-pumped, Nd:YAG laser is described. The oscillator utilizes an unstable resonator design with a Gaussian reflectivity output coupler and a side-pumped zigzag slab gain medium. The laser produces 18-mJ, 10-ns pulses at a repetition rate of 242 Hz in a near-TEM00 mode with an optical efficiency of up to 14%. An extended performance test was recently concluded in which the transmitter operated at reduced output for more than 4.8 × 109 shots with no optical damage. Design criteria, beam quality, and lifetime data are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.
  2. J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .
  3. J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999).
    [CrossRef]
  4. T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
    [CrossRef]
  5. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
    [CrossRef]
  6. E. Armandillo, C. Norrie, A. Cosentino, P. Laporta, P. Wazen, P. Maine, “Diode-pumped high efficiency high-brightness Q-switched Nd:YAG slab laser,” Opt. Lett. 22, 1168–1170 (1997).
    [CrossRef] [PubMed]
  7. R. S. Afzal, “Mars observer laser altimeter-laser transmitter,” App. Opt. 33, 3184–3188 (1994).
    [CrossRef]
  8. R. S. Afzal, A. W. Yu, J. J. Zayhowski, T. Y. Fan, “Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser,” Opt. Lett. 22, 1314–1316 (1997).
    [CrossRef]
  9. D. B. Coyle, “Injection seeded, diode-pumped, short pulse Nd:YAG ring laser for space based laser ranging,” Ph.d. Dissertation (American University, Washington, D.C., 1992).
  10. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
    [CrossRef]
  12. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985).
    [CrossRef] [PubMed]
  13. A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
    [CrossRef]
  14. S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
    [CrossRef]
  15. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
    [CrossRef]
  16. M. Morin, National Optics Institute, 369 Franquet, Saint-Foy, Quebec, Canada G1P 4N8, (personal communication, 1998).
  17. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  18. D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).
  19. W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969).
    [CrossRef]
  20. paraxia is a general laser beam propagation and laser resonator analysis program. See http://www.sciopt.com .

1999 (1)

J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999).
[CrossRef]

1997 (3)

1995 (1)

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).

1994 (1)

R. S. Afzal, “Mars observer laser altimeter-laser transmitter,” App. Opt. 33, 3184–3188 (1994).
[CrossRef]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1988 (2)

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

1985 (1)

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

1983 (1)

T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
[CrossRef]

1969 (1)

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969).
[CrossRef]

1965 (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Abshire, J. B.

J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .

Afzal, R. S.

Armandillo, E.

Blair, J. B.

J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999).
[CrossRef]

Byer, R. L.

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985).
[CrossRef] [PubMed]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
[CrossRef]

Cosentino, A.

Coyle, D. B.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).

D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.

D. B. Coyle, “Injection seeded, diode-pumped, short pulse Nd:YAG ring laser for space based laser ranging,” Ph.d. Dissertation (American University, Washington, D.C., 1992).

De Silvestri, S.

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Dixon, G. J.

Eckardt, R. C.

T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Fan, T. Y.

Guerra, D. V.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).

Hofton, M. A.

J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999).
[CrossRef]

Kane, T. J.

B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985).
[CrossRef] [PubMed]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
[CrossRef]

Kay, R. B.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).

D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

Krupke, W. F.

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969).
[CrossRef]

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Laporta, P.

E. Armandillo, C. Norrie, A. Cosentino, P. Laporta, P. Wazen, P. Maine, “Diode-pumped high efficiency high-brightness Q-switched Nd:YAG slab laser,” Opt. Lett. 22, 1168–1170 (1997).
[CrossRef] [PubMed]

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Lindauer, S. J.

D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.

Magni, M.

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Maine, P.

Morin, M.

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

M. Morin, National Optics Institute, 369 Franquet, Saint-Foy, Quebec, Canada G1P 4N8, (personal communication, 1998).

Norrie, C.

Schutz, B. E.

J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .

Siegman, A. E.

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Smith, J. C.

J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .

Sooy, W. R.

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969).
[CrossRef]

Svelto, O.

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Wazen, P.

Yu, A. W.

Zayhowski, J. J.

Zhou, B.

App. Opt. (1)

R. S. Afzal, “Mars observer laser altimeter-laser transmitter,” App. Opt. 33, 3184–3188 (1994).
[CrossRef]

Geophys. Res. Lett. (1)

J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999).
[CrossRef]

IEEE J. Quantum Electron. (6)

T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969).
[CrossRef]

J. Appl. Phys. (1)

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).

Opt. Lett. (3)

Opt. Quantum Electron. (1)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

Proc. IEEE (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Other (6)

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

M. Morin, National Optics Institute, 369 Franquet, Saint-Foy, Quebec, Canada G1P 4N8, (personal communication, 1998).

D. B. Coyle, “Injection seeded, diode-pumped, short pulse Nd:YAG ring laser for space based laser ranging,” Ph.d. Dissertation (American University, Washington, D.C., 1992).

D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.

J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .

paraxia is a general laser beam propagation and laser resonator analysis program. See http://www.sciopt.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The HELT configuration. It was important to have modularity and micrometer motion control on the head and end mirrors for thorough performance characterization.

Fig. 2
Fig. 2

Modeled distribution of pump radiation in slab. The four-bar diode array and undoped cylindrical lens produces a relatively smooth absorption distribution in the Nd:YAG slab, as seen on the right side of the figure.

Fig. 3
Fig. 3

A CCD image of the 1064-nm fluorescence emanating from the end of a rectangular Nd:YAG slab when pumped in the HELT head configuration. The diode energy enters from the left and is reflected off the right slab face for a two-pass pump path.

Fig. 4
Fig. 4

Pump head configuration (the pump lens mount is not shown). The Nd:YAG slab is thermally bonded to a molybdenum copper block in order to match thermal expansion coefficients.

Fig. 5
Fig. 5

End view of the HELT pump head. This version shows an integrated water path at the base, but the present design is clamped to a water-cooled plate to better simulate conductive cooling for the complete assembly. Note the stepped slab mounting surface in detail.

Fig. 6
Fig. 6

(a) Calculated thermal distribution in the Nd:YAG cross section. The borders between shaded areas represent isotherms. This slab was modeled with a flat heat-sink interface. (b) Calculated thermal distribution in slab but with a stepped thermal interface. The introduction of a double layer of thermal conductive tape on the sides of the central region helps reduce the effective thermal lens.

Fig. 7
Fig. 7

HELT life test configuration. Intracavity beam profiles were monitored to track the fluences in the slab.

Fig. 8
Fig. 8

Average power output lifetime data. At 2.3 × 109 shots, the diode current pulse was increased to 100 μs to accommodate the degradation in diode output. The erratic behavior for the second 2.3 × 109 shots was due to several power outages, water chiller problems, and diode driver failure. However, even with these added stresses, no damage was present after 4.8 × 109 shots.

Fig. 9
Fig. 9

Lifetime data of the intracavity beam diameter on the HR mirror and the far-field divergence.

Fig. 10
Fig. 10

(a) Typical HELT far-field output pattern as formed at the focal plane of a f = 75 cm positive lens. (b) HELT intracavity beam image on the HR mirror. This was captured regularly with the other pertinent lifetime data to monitor the fluence in the cavity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ωx=ωocosαsinφ,
Mg=G+G2-12,
ωn=ωo/M2n,
S=1-g2/1-g1.

Metrics