Abstract

Design issues such as optical transmission, interference mechanisms, the splitting ratio, the polarization dependence, and the fabrication tolerances of a compact parabolically tapered multimode-interference (MMI)-based 3-dB power splitter on an InP-based deeply etched ridge waveguide, by use of the finite-element-based beam-propagation method, are presented. The benefits and drawbacks of the use of the tapered structure, in comparison with an untapered MMI-based 3-dB splitter, have also been investigated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Noguchi, O. Mitomi, H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
    [CrossRef]
  2. E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
    [CrossRef]
  3. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
    [CrossRef]
  4. F. Heisman, R. W. Smith, “High speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
    [CrossRef]
  5. P. Baets, P. E. Lagasse, “Calculation of radiation loss in integrated optic tapers and y junctions,” Appl. Opt. 21, 1972–1978 (1982).
    [CrossRef] [PubMed]
  6. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  7. S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
    [CrossRef]
  8. N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
    [CrossRef]
  9. A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
    [CrossRef]
  10. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
    [CrossRef]
  11. D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
    [CrossRef]
  12. S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikati, “A new full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Lightwave Technol. 18, 409–416 (1999).
    [CrossRef]
  13. P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
    [CrossRef]
  14. M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
    [CrossRef]
  15. C. Themistos, B. M. A. Rahman, “Design issues of a multimode interference-based 3-dB splitter,” Appl. Opt. 41, 7037–7044 (2002).
    [CrossRef] [PubMed]

2002

1999

1998

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

1996

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

F. Heisman, R. W. Smith, “High speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[CrossRef]

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
[CrossRef]

1995

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1994

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

1993

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

1982

Agrawal, N.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Bachmann, M.

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

Baets, P.

Besse, P. A.

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

de Miguel, J. L.

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

de Vreede, A. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Dries, C.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Driessen, A.

Ehrke, H. J.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

El-Mikati, H. A.

Ferreras, A.

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

Forrest, S. R.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Franke, D.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Furst, W.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Gini, E.

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

Gomez-Salas, E.

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

Grattan, K. T. V.

M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
[CrossRef]

Groen, F. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Heisman, F.

F. Heisman, R. W. Smith, “High speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[CrossRef]

Hernandez-Gil, F.

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

Inayoshi, H.

John, E.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Lagali, N. S.

Lagasse, P. E.

Levy, D. S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Li, Y. M.

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

MacDonald, R. I.

Melchior, H.

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

Metaal, E. G.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Mitomi, O.

Miyazawa, H.

Morishima, G.

Nagai, S.

Noguchi, K.

Obayya, S. S. A.

Osgood, R. M.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Paiam, M. R.

Park, K. H.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Pieper, W.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Rahman, B. M. A.

Rajarajan, M.

M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
[CrossRef]

Rodriguez, F.

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

Scarmozzino, R.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Smit, M. K.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Smith, R. W.

F. Heisman, R. W. Smith, “High speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Studenkov, P.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Themistos, C.

Utaka, K.

Verbeek, B. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Weinhert, C. M.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

Wongcharoen, T.

M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
[CrossRef]

Worhoff, K.

Appl. Opt.

Electron. Lett.

E. John, N. Agrawal, W. Pieper, H. J. Ehrke, D. Franke, W. Furst, C. M. Weinhert, “Monolithically integrated nonlinear sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer,” Electron. Lett. 32, 782–784 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Heisman, R. W. Smith, “High speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, “Useful formulas for multimode interference power splitter/combiner,” IEEE Photon. Technol. Lett. 5, 1224–1227 (1993).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. R. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[CrossRef]

J. Lightwave Technol.

S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikati, “A new full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Lightwave Technol. 18, 409–416 (1999).
[CrossRef]

P. A. Besse, E. Gini, M. Bachmann, H. Melchior, “New 2 × 2 and 1 × 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14, 2286–2292 (1996).
[CrossRef]

M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Tapered MMI-based 3-dB splitter.

Fig. 2
Fig. 2

H-field evolution along the direction of propagation z for a 4.10-µm-wide tapered MMI with dΩ = 0.4, for the TE mode.

Fig. 3
Fig. 3

H-field evolution along the direction of propagation z for a 4.10-µm-wide tapered MMI with dΩ = 0.4, and input waveguides with a tilt angle of 4°, for the case of TE mode.

Fig. 4
Fig. 4

MMI length with normalized width variation for the TE mode and the TM mode under the GI, RI, and SI mechanisms, for a 4.10-µm-wide MMI, compared with the TM polarization under the GI mechanism.

Fig. 5
Fig. 5

Normalized power transmission with normalized width variation for the TE under the GI, RI, and SI mechanisms, for a 4.10-µm-wide MMI, compared with the TM polarization under the GI mechanism.

Fig. 6
Fig. 6

Splitting ratio with normalized width variation bar (circles) and cross (triangles) ports for the TE and TM modes under the general interference mechanism, in a 4.10-µm-wide MMI.

Fig. 7
Fig. 7

Splitting ratio with normalized width variation of the bar (circles) and cross (triangles) ports of a 4.10-µm-wide tapered MMI-based 3-dB splitter under the GI, RI, and SI mechanisms.

Fig. 8
Fig. 8

TE normalized transmission and MMI length for a 4.10-µm MMI, under the GI mechanism, compared with untapered MMI with W 0 = W1.

Fig. 9
Fig. 9

H-field profile for the TM mode for (a) tapered and (b) untapered MMI structures under the GI mechanism.

Fig. 10
Fig. 10

TM wavelength response for tapered and untapered MMI, under the GI mechanism.

Fig. 11
Fig. 11

Fabrication tolerance for tapered and untapered MMI devices with MMI width variation, under the GI mechanism.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Lπ=πβ0-β1,
Wz=W1+W0-W1LMMI/2-z2/LMMI/22,

Metrics