Abstract

We demonstrate transmission geometry volume holograms working under broadband illumination. We show that increased illumination bandwidth enhances the lateral field of view of planar reference holograms. We exploit this phenomenon to design volume holographic spectrum analyzers and present results from an experimental prototype. Furthermore, we show that there is a trade-off involved, because an improvement in the field of view results in a reduction of image contrast as a function of depth. We experimentally demonstrate this trade-off and discuss possible ways to overcome it.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
    [CrossRef]
  2. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
    [CrossRef] [PubMed]
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  4. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  5. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
    [CrossRef]
  6. W. Liu, D. Psaltis, G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002).
    [CrossRef]
  7. A. Sinha, G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002).
    [CrossRef]
  8. A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Exp. 11, 3202–3209 (2003), http://www.opticsexpress.org .
  9. A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).
  10. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  11. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  12. D. Psaltis, F. Mok, H. Y.-S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
    [CrossRef] [PubMed]
  13. G. Barbastathis, D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. Coufal, D. Psaltis, G. Sincerbox, eds. (Springer, New York, 2000).
    [CrossRef]
  14. A. Sinha, “Imaging using volume holograms,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2004).
  15. A. Stein, G. Barbastathis, “Axial imaging necessitates loss of lateral shift invariance,” Appl. Opt. 41, 6055–6061 (2002).
    [CrossRef] [PubMed]
  16. A. Sinha, W. Sun, G. Barbastathis, “N-ocular volume holographic imaging,” Appl. Opt. (2004), submitted for publication.
  17. M. A. Neifeld, Y. Wu, “Parallel image restoration with a two-dimensional likelihood-based algorithm,” Appl. Opt. 41, 4812–4824 (2002).
    [CrossRef] [PubMed]

2004

A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).

2003

A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Exp. 11, 3202–3209 (2003), http://www.opticsexpress.org .

2002

1999

G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[CrossRef]

1996

1995

1994

1966

1963

Balberg, M.

Barbastathis, G.

A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).

A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Exp. 11, 3202–3209 (2003), http://www.opticsexpress.org .

W. Liu, D. Psaltis, G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002).
[CrossRef]

A. Sinha, G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002).
[CrossRef]

A. Stein, G. Barbastathis, “Axial imaging necessitates loss of lateral shift invariance,” Appl. Opt. 41, 6055–6061 (2002).
[CrossRef] [PubMed]

G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[CrossRef]

G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef] [PubMed]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

G. Barbastathis, D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. Coufal, D. Psaltis, G. Sincerbox, eds. (Springer, New York, 2000).
[CrossRef]

A. Sinha, W. Sun, G. Barbastathis, “N-ocular volume holographic imaging,” Appl. Opt. (2004), submitted for publication.

Brady, D. J.

G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[CrossRef]

Curtis, K.

Kozma, A.

Leith, E. N.

Levene, M.

Li, H. Y.-S.

Liu, W.

Marks, J.

Massey, N.

Mok, F.

Neifeld, M. A.

Psaltis, D.

Pu, A.

Shih, T.

A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).

Sinha, A.

A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).

A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Exp. 11, 3202–3209 (2003), http://www.opticsexpress.org .

A. Sinha, G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002).
[CrossRef]

A. Sinha, “Imaging using volume holograms,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2004).

A. Sinha, W. Sun, G. Barbastathis, “N-ocular volume holographic imaging,” Appl. Opt. (2004), submitted for publication.

Stein, A.

Sun, W.

A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).

A. Sinha, W. Sun, G. Barbastathis, “N-ocular volume holographic imaging,” Appl. Opt. (2004), submitted for publication.

Upatnieks, J.

van Heerden, P. J.

Wu, Y.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Appl. Opt.

Opt. Exp.

A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Exp. 11, 3202–3209 (2003), http://www.opticsexpress.org .

Opt. Lett.

Proc. IEEE

G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[CrossRef]

Other

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

G. Barbastathis, D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. Coufal, D. Psaltis, G. Sincerbox, eds. (Springer, New York, 2000).
[CrossRef]

A. Sinha, “Imaging using volume holograms,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2004).

A. Sinha, W. Sun, G. Barbastathis, “N-ocular volume holographic imaging,” Appl. Opt. (2004), submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup for PR VHI. (a) Recording and (b) readout with a point source collimated by an objective lens.

Fig. 2
Fig. 2

Setup for experimental verification of the diffracted field for a two-color readout.

Fig. 3
Fig. 3

Experimentally observed diffracted field for readout with two mutually incoherent Bragg-matched point sources emitting at λ p = 532 nm and λ p = 632.8 nm. (a) Defocus δ = 0, (b) δ = 4 mm. All lateral dimensions are in millimeters.

Fig. 4
Fig. 4

Schematic of the PR VHI spectrometer. (a) The illumination whose spectrum is unknown is placed at the Bragg-matched plane of the PR VHI system; the illumination spectrum is the measured one-dimensional intensity function (appropriately scaled) on the detector. (b) Measured spectrum where we used two narrow-bandpass optical filters at 488 ± 6 nm (blue) and 532 ± 6 nm (green). The separation between the green and blue slits corresponds to 43.92 nm, and the actual wavelength separation is 44 nm.

Fig. 5
Fig. 5

Percentage change in wavelength-normalized Δz FWHM as a function of normalized wavelength μ. We note that the PSF narrowing effect is small and can be neglected for most practical purposes.

Fig. 6
Fig. 6

Experimentally observed longitudinal PSFs for the two point sources described in Fig. 3.

Fig. 7
Fig. 7

Experimentally observed diffraction pattern observed for a broadband fluorescent object emitting at λ p = 580 ± 20 nm. (a) Comparison of the Bragg-matched laser λ p = 532 nm and the fluorescent source. (b) The fluorescent source stays visible for a large lateral translation Δx′ = 3 mm. (c) The Bragg slit at δ = 2 mm for the fluorescent source is wider than the laser Bragg slit.

Fig. 8
Fig. 8

Depth resolution under broadband illumination. (a) Simulation setup used. The object is assumed to emit at two discrete wavelengths λ p,1 = 532 nm and λ p,2 = 540 nm, a = 12.7 mm, f = 50.2 mm, L = 2 mm, and θ s = 30°. (b) Theoretical PSFs solid curve, μ = 1; dashed curve, μ = 1.015; dotted curve, the incoherent sum of the two PSFs and is broader than the monochromatic PSF.

Fig. 9
Fig. 9

Trade-off involved between the FOV and the depth resolution for broadband VHI. (a) Object of interest is the bottom screw in the chassis of a toy car. (b) and (c) The FOV for narrowband (green light with Δλ ≈ 10 nm) illumination is much less than that of broadband illumination (white light with Δλ ≈ 120 nm). All lateral dimensions are in millimeters. (d) Depth resolution, or equivalently the contrast between surface features at different heights is much better for the narrowband illumination as also shown in (e), which are the theoretical PSF curves under narrowband and broadband illumination.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Efr=expi2π zλf.
Esr=expi2π1-θs22zλf+i2πθsxλf.
Δr=expi2πλfxθs-z θs22.
Ãkp, kd=S ν Δr · expikp-kd · rd3r,
kp=2πfxxˆ+fyyˆ+1λp1-λp2fx2+fy22zˆ.
kd=2πxλpFxˆ+yλpFyˆ+1λp1-x2+y22F2zˆ.
A˜xλpF, yλpF; fx, fy=δfx-xλpF+θsλfδfy-yλpF×sincLx2+y22λpF2-λpfx2+fy22-θs22λf.
E˜dxλpF, yλpF= E˜pfx, fyÃ×xλpF, yλpF; fx, fydfxdfy.
μ=λpλf.
xf=θs1-μ2.
xF=θs1+μ2.
zp=ff-δδf2δ
Ix, y, μIbcirc|r|Faδ/f2sinc2Lθsλp×xF-θs1+μ2,
|r|2=x-Fθs1+μ2-δθs1-μ2f2+y2
ΔxFλp,maxLθs.
Δλp=2λfλp,maxLθs2.
IdI0=1π02πdϕ 01dρρ sinc2aL sin θsδλf2 ρ sin ϕ,
ΔzFWHM=5.34f2λpaθsL.
xc±Δx=fθs1-μc2±fθsΔμ2,
IBBx, y= Ix, y, μSμdμ.
|r|=Faδf2.
x=Fθsμ2+12.
|r|Fθsμ2-12,
Iδ= IBBx, ydxdy,

Metrics