Abstract

Based on the off-axis theory, a model for describing the far field with the bipeak structure of a high-power laser diode is proposed. The computed results agree well with the measured far-field data of practical devices. A minimum overall error criterion for fitting the theoretical model with the measured data is also given. The results show that the overall error of this model is less than 5% for popular laser diodes. This model has a simple mathematical structure and can be easily used to design the beam-shaping system and to analyze the propagation properties when the laser beam passes through an optic system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Zenteno, “Design of a device for pumping a double-clad fiber laser with a laser-diode bar,” Appl. Opt. 33, 7282–7287 (1994).
    [CrossRef] [PubMed]
  2. S. Sinzinger, K.-H. Brenner, J. Moisel, T. Spick, M. Testorf, “Astigmatic gradient-index elements for laser-diode collimation and beam shaping,” Appl. Opt. 34, 6626–6632 (1995).
    [CrossRef] [PubMed]
  3. S. B. Sevastianov, S. M. Vatnik, A. Mayorov, “Shaping of the end of a multimode optical fiber for efficient coupling light from a laser diode,” Appl. Opt. 38, 77–85 (1999).
    [CrossRef]
  4. A. F. Kurtz, “Design of a laser printer using a laser array and beam homogenizer,” in Laser Beam Shaping, F. M. Dickey, S. C. Holswade, eds., Proc. SPIE4095, 147–153 (2000).
    [CrossRef]
  5. H. Yoda, T. Endo, K. Shiraishi, “Cascaded GI-fiber chips with a wedge-shaped end for the coupling between an SMF and a high-power LD with large astigmatism,” J. Lightwave Technol. 20, 1545–1548 (2002).
    [CrossRef]
  6. X. Zeng, A. Naqwi, “Far-field distribution of double-heterostructure diode laser beams,” Appl. Opt. 32, 4491–4494 (1993).
    [CrossRef] [PubMed]
  7. S. Nemoto, “Experimental evaluation of a new expression for the far field of a diode laser beam,” Appl. Opt. 33, 6387–6392 (1994).
    [CrossRef] [PubMed]
  8. Y. Li and, J. Katz, “Nonparaxial analysis of the far-field radiation patterns of double-heterostructure lasers,” Appl. Opt. 35, 1442–1451 (1996).
    [CrossRef]
  9. X. Zeng, C. Liang, Y. An, “Far-field propagation of an off-axis Gaussian wave,” Appl. Opt. 38, 6253–6256 (1999).
    [CrossRef]

2002

1999

1996

1995

1994

1993

An, Y.

Brenner, K.-H.

Endo, T.

Katz, J.

Kurtz, A. F.

A. F. Kurtz, “Design of a laser printer using a laser array and beam homogenizer,” in Laser Beam Shaping, F. M. Dickey, S. C. Holswade, eds., Proc. SPIE4095, 147–153 (2000).
[CrossRef]

Li and, Y.

Liang, C.

Mayorov, A.

Moisel, J.

Naqwi, A.

Nemoto, S.

Sevastianov, S. B.

Shiraishi, K.

Sinzinger, S.

Spick, T.

Testorf, M.

Vatnik, S. M.

Yoda, H.

Zeng, X.

Zenteno, L. A.

Appl. Opt.

J. Lightwave Technol.

Other

A. F. Kurtz, “Design of a laser printer using a laser array and beam homogenizer,” in Laser Beam Shaping, F. M. Dickey, S. C. Holswade, eds., Proc. SPIE4095, 147–153 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Facet of a laser chip and related coordinate system.

Fig. 2
Fig. 2

Decentered Gaussian modes.

Fig. 3
Fig. 3

Comparison of the theoretical profile in the perpendicular plane (y = 0) with the measured data for LD1.

Fig. 4
Fig. 4

Comparison of the theoretical profile in the parallel plane (x = 0) with the measured data for LD1.

Fig. 5
Fig. 5

Comparison of the theoretical profile in the perpendicular plane (y = 0) with the measured data for LD2.

Fig. 6
Fig. 6

Comparison of the theoretical profile in the parallel plane (x = 0) with the measured data for LD2.

Fig. 7
Fig. 7

Comparison of the theoretical profile in the perpendicular plane (y = 0) with the measured data for LD3.

Fig. 8
Fig. 8

Comparison of the theoretical profile in the parallel plane (x = 0) with the measured data for LD3.

Fig. 9
Fig. 9

Comparison of calculated profiles in the perpendicular plane (y = 0) with the measured data at different propagation distances z for LD3.

Fig. 10
Fig. 10

Comparison of calculated profiles in the parallel plane (x = 0) with the measured data at different propagation distances z for LD3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ex, y, z=-izλrexpikrr-+-+ u0x, y×exp-ikrxx+yydxdy,
u±x, y=u0± exp-p|x|exp-q±y2+ik±y,
E±x, y, z=A±zrexpikrrΓ2Γ2+x2×exp-r sin θ±-y2Ω±2,
A±=-u0±2iλpπq±,
Γ2=p2k2 r2,
Ω±2=4q±k2 r2,
sin θ±=k±/k.
Ix, y, z=|A-|2z2r4Γ2Γ2+x22A+A-2×exp-2r sin θ+-y2Ω+2+exp-2r sin θ--y2Ω-2.
Ix, 0, z=B z2r4Γ2Γ2+x22,
I0, y, z=|A-|2z2r4A+A-2 exp-2r sin θ+-y2Ω+2 +exp-2r sin θ--y2Ω-2.
ε=|Sm-St|Sm.

Metrics