Abstract

We report quantitative, spatially resolved measurements of methylidyne concentration ([CH]) in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure by using both cavity ring-down spectroscopy (CRDS) and linear laser-induced fluorescence (LIF) in the A-X (0, 0) band. Three partially premixed (ϕB = 1.45, 1.6, 2.0) flames plus a single nonpremixed methane-air flame are investigated at a global strain rate of 20 s-1. These quantitative measurements are compared with predictions from an opposed-flow flame code when utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). The LIF measurements of [CH] are corrected for variations in the electronic quenching rate coefficient by using predicted major species concentrations and temperatures along with quenching cross sections for CH that are available in the literature. The peak CH concentration obtained by CRDS is used to calibrate the quenching-corrected LIF measurements. Excellent agreement is obtained between CH concentration profiles measured by using the CRDS and LIF techniques. The spatial location of the CH layer is very well predicted by GRI 3.0; moreover, the measured and predicted CH concentrations are in good agreement for all the flames of this study.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).
  2. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .
  3. P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
    [CrossRef]
  4. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .
  5. J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985).
    [CrossRef] [PubMed]
  6. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  7. I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
    [CrossRef]
  8. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
    [CrossRef]
  9. J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000).
    [CrossRef]
  10. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
    [CrossRef]
  11. T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991).
    [CrossRef]
  12. M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).
  13. M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
    [CrossRef]
  14. X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
    [CrossRef]
  15. R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
    [CrossRef]
  16. J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).
  17. C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
    [CrossRef]
  18. R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
    [CrossRef]
  19. C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
    [CrossRef]
  20. R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000).
    [CrossRef]
  21. R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000).
    [CrossRef]
  22. R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
    [CrossRef]
  23. S. V. Naik, N. M. Laurendeau, “LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counter-flow partially premixed and nonpremixed flames,” Combust. Sci. Technol. (to be published).
  24. A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).
  25. C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
    [CrossRef] [PubMed]
  26. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  27. J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
    [CrossRef]
  28. N. A. Vora, “Flame suppression activity via laser-induced fluorescence measurements and modeling of hydroxyl concentration in opposed CH4/air diffusion flames,” M.S. thesis (School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 2000).
  29. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
    [CrossRef]
  30. J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustion,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Palo Alto, Calif., 1991).
  31. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
    [CrossRef]
  32. M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
    [CrossRef]
  33. K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).
  34. R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).
  35. J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.
  36. R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

2004 (1)

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

2003 (2)

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

2002 (2)

M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
[CrossRef]

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

2001 (6)

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
[CrossRef]

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

2000 (4)

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000).
[CrossRef]

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000).
[CrossRef]

1999 (2)

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
[CrossRef]

1998 (2)

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

1997 (1)

1996 (2)

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).

1995 (1)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

1992 (1)

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

1991 (1)

T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991).
[CrossRef]

1988 (2)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

1985 (1)

1976 (1)

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Barj, M.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Barlow, R. S.

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

Berg, P. A.

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Bowman, C. T.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Chapput, A.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Chaturvedy, A.

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
[CrossRef]

Chen, J. Y.

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

Cheskis, S.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
[CrossRef]

Cooper, C. S.

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
[CrossRef] [PubMed]

Crosley, D. R.

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).

Davidson, D. F.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

De Goey, L. P. H.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Derzy, I.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
[CrossRef]

Desgroux, P.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Dixon-Lewis, G.

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

Dreyer, C. B.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
[CrossRef]

Eiteneer, B.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Evans, G. H.

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

Evertsen, R.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

Frank, J. H.

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Frenklach, M.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

Gardiner, W. C.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Golden, D. M.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

Goldenberg, M.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Gore, J. P.

J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.

Grcar, J. F.

A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).

Hanson, R. K.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Harris, J. M.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Hermanns, R. T. E.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

Hill, D. A.

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

Jamette, P.

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Jeffries, J. B.

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Karpetis, A. N.

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

Kee, R. J.

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).

Klein-Douwel, R. H.

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

Laurendeau, N. M.

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
[CrossRef]

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
[CrossRef] [PubMed]

J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985).
[CrossRef] [PubMed]

S. V. Naik, N. M. Laurendeau, “LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counter-flow partially premixed and nonpremixed flames,” Combust. Sci. Technol. (to be published).

Lim, J.

J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.

Lin, P.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Linne, M.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
[CrossRef]

Lissianski, V. V.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

Long, M. B.

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Lozovsky, V. A.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
[CrossRef]

Luque, J.

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).

Lutz, A. E.

A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).

Lytle, F. E.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

McCain, T. C.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

McIlroy, A.

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000).
[CrossRef]

Mercier, X.

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Miller, J. A.

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

Moreau, C.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Moriarty, N. W.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Naik, S. V.

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

S. V. Naik, N. M. Laurendeau, “LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counter-flow partially premixed and nonpremixed flames,” Combust. Sci. Technol. (to be published).

Noble, A. R.

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

Norton, T. S.

T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Pauwels, J. F.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Qin, Z.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Ravikrishna, R. V.

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000).
[CrossRef]

Renfro, M. W.

M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
[CrossRef]

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
[CrossRef]

Salmon, J. T.

Scherer, J. J.

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustion,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Palo Alto, Calif., 1991).

Smith, G. P.

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Smooke, M. D.

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Smyth, K. C.

T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991).
[CrossRef]

Song, S.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

Spuler, S. M.

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
[CrossRef]

Takeno, T.

J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Tanoff, M. A.

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

Ter Meulen, J. J.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

Therssen, E.

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Thoman, J. W.

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000).
[CrossRef]

Van Oijen, J. A.

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

Venkatesan, K. K.

M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
[CrossRef]

Vora, N. A.

N. A. Vora, “Flame suppression activity via laser-induced fluorescence measurements and modeling of hydroxyl concentration in opposed CH4/air diffusion flames,” M.S. thesis (School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 2000).

Walsh, K. T.

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

Xu, Y.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zhu, X. L.

J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.

Zurn, R. M.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

Anal. Chem. (1)

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001).
[CrossRef]

J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).

C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999).
[CrossRef]

Combust. Flame (7)

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001).
[CrossRef]

P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000).
[CrossRef]

R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000).
[CrossRef]

R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000).
[CrossRef]

R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Combust. Sci. Technol. (5)

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001).
[CrossRef]

R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001).
[CrossRef]

R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001).
[CrossRef]

T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991).
[CrossRef]

J. Chem. Phys. (2)

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Phys. Chem. A (1)

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000).
[CrossRef]

Proc. Combust. Inst. (5)

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).

M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002).
[CrossRef]

K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).

R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (7)

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .

J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.

J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustion,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Palo Alto, Calif., 1991).

N. A. Vora, “Flame suppression activity via laser-induced fluorescence measurements and modeling of hydroxyl concentration in opposed CH4/air diffusion flames,” M.S. thesis (School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 2000).

S. V. Naik, N. M. Laurendeau, “LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counter-flow partially premixed and nonpremixed flames,” Combust. Sci. Technol. (to be published).

A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup used for making CRDS and linear LIF measurements: A1–A3, apertures; BSAs, beam steering assemblies; F, bandpass filter; L1–L3, spherical lenses; M1, M2, cavity mirrors; PV, probe volume; T, telescope; PMTs, photomultiplier tubes. Components indicated by dashed lines are used only in the CRDS experiments.

Fig. 2
Fig. 2

Schematic of the counterflow nozzle used for making CRDS and linear LIF measurements.

Fig. 3
Fig. 3

Comparison of measured and calculated excitation spectra in a counterflow partially premixed flame (ϕ B = 1.45) at 1 atm. The measured spectrum is obtained at the location of peak CH by linear LIF.

Fig. 4
Fig. 4

Relative radial profiles of CH concentration in CH4/O2/N2 counterflow partially premixed and diffusion flames at a global strain rate of 20 s-1. For ϕ B = 1.6, a complete radial profile is shown. To prevent clutter, full radial profiles for the remaining flames are not displayed.

Fig. 5
Fig. 5

CRDS measurements of CH concentration versus modeling in CH4/O2/N2 counterflow flames at a global strain rate of 20 s-1: (a) ϕ B = 1.45, (b) ϕ B = 1.6, (c) ϕ B = 2.0, (d) diffusion. Error bars are shown only at the location of peak CH.

Fig. 6
Fig. 6

Comparison of CRDS and linear LIF measurements in CH4/O2/N2 counterflow flames at a global strain rate of 20 s-1: (a) ϕ B = 1.45, (b) ϕ B = 1.6, (c) ϕ B = 2.0, (d) diffusion.

Tables (3)

Tables Icon

Table 1 Flow Rates for CH4/O2/N2 Counterflow Partially Premixed and Diffusion Flamesa

Tables Icon

Table 2 Effect of Radiation on Predicted Peak Flame Temperature and Peak CH Concentration for CH4/O2/N2 Counterflow Partially Premixed and Diffusion Flames at a Global Strain Rate of 20 s-1

Tables Icon

Table 3 Variation in Total Quenching Rate Coefficient for CH4/O2/N2 Counterflow Partially Premixed and Diffusion Flames at a Global Strain Rate of 20 s-1 a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ= L1-R+Ac,
A= σNxdx=σNd= Lcτv-1-τo-1,
N= ΔvLhvBfBΓAd,
NT= SFSF,cQeQe,cΓcΓfBTcfBT NT,c,

Metrics