Abstract

We report quantitative, spatially resolved measurements of methylidyne concentration ([CH]) in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure by using both cavity ring-down spectroscopy (CRDS) and linear laser-induced fluorescence (LIF) in the A-X (0, 0) band. Three partially premixed (ϕB = 1.45, 1.6, 2.0) flames plus a single nonpremixed methane-air flame are investigated at a global strain rate of 20 s-1. These quantitative measurements are compared with predictions from an opposed-flow flame code when utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). The LIF measurements of [CH] are corrected for variations in the electronic quenching rate coefficient by using predicted major species concentrations and temperatures along with quenching cross sections for CH that are available in the literature. The peak CH concentration obtained by CRDS is used to calibrate the quenching-corrected LIF measurements. Excellent agreement is obtained between CH concentration profiles measured by using the CRDS and LIF techniques. The spatial location of the CH layer is very well predicted by GRI 3.0; moreover, the measured and predicted CH concentrations are in good agreement for all the flames of this study.

© 2004 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription