Abstract

A differential absorption lidar has been built to measure CO2 concentration in the atmosphere. The transmitter is a pulsed single-frequency Ho:Tm:YLF laser at a 2.05-μm wavelength. A coherent heterodyne receiver was used to achieve sensitive detection, with the additional capability for wind profiling by a Doppler technique. Signal processing includes an algorithm for power measurement of a heterodyne signal. Results show a precision of the CO2 concentration measurement of 1%–2% 1σ standard deviation over column lengths ranging from 1.2 to 2.8 km by an average of 1000 pulse pairs. A preliminary assessment of instrument sensitivity was made with an 8-h-long measurement set, along with correlative measurements with an in situ sensor, to determine that a CO2 trend could be detected.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Keeling, “Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii,” Tellus 25, 538–551 (1976).
  2. J. Kaiser, K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
    [CrossRef]
  3. P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
    [CrossRef]
  4. T. M. Taczak, D. W. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
    [CrossRef]
  5. R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.
  6. R. T. Menzies, D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
    [CrossRef] [PubMed]
  7. B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
    [CrossRef]
  8. J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, C. Y. Weng, “Frequency-doubled CO2 lidar measurement and diode laser spectroscopy of atmospheric CO2,” Appl. Opt. 22, 2592–2602 (1983).
    [CrossRef]
  9. G. J. Koch, “Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases,” Ph.D. dissertation (Old Dominion University, Norfolk, Virginia, 2001).
  10. T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.
  11. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
    [CrossRef] [PubMed]
  12. S. Lehmann, H. Linne, J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.
  13. U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.
  14. J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
    [CrossRef]
  15. S. W. Henderson, E. Y. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef] [PubMed]
  16. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
    [CrossRef]
  17. G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
    [CrossRef] [PubMed]
  18. R. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurement of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
    [CrossRef] [PubMed]
  19. B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
    [CrossRef]
  20. S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
    [CrossRef]
  21. USF HITRAN-PC. Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).
  22. D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
    [CrossRef]
  23. B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
    [CrossRef]
  24. S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
    [CrossRef]
  25. S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
    [CrossRef]
  26. D. K. Killinger, N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
    [CrossRef]
  27. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
    [CrossRef] [PubMed]
  28. J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

2003 (2)

R. T. Menzies, D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

2002 (2)

S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
[CrossRef]

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

2001 (1)

P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

2000 (2)

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

1999 (2)

J. Kaiser, K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

1998 (2)

1997 (2)

1996 (1)

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

1986 (1)

1985 (1)

1984 (1)

1983 (1)

1981 (1)

D. K. Killinger, N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
[CrossRef]

1976 (1)

C. D. Keeling, “Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii,” Tellus 25, 538–551 (1976).

Abedin, M. N.

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

Anderson, B. E.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Avery, M. A.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Balling, R. C.

S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
[CrossRef]

Barnes, J. C.

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

Barnes, N. P.

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

Belmiloud, D.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Blake, D. R.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

Bosenberg, J.

S. Lehmann, H. Linne, J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.

Brault, J. W.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Bufton, J. L.

Chiao, M. P.

R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.

Collins, J. E.

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Conway, T. J.

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Dharamsi, A. N.

Dobbs, M. E.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

Fitzgerald, C. M.

Frehlich, R.

Fry, E. S.

Gentry, B. M.

Gregory, G. L.

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Gypson, M.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

Hannon, S. M.

Hardesty, R. M.

Henderson, S. W.

Idso, C. D.

S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
[CrossRef]

Idso, S. B.

S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
[CrossRef]

Ismail, S.

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

Itabe, T.

Kaiser, J.

J. Kaiser, K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
[CrossRef]

Keeling, C. D.

C. D. Keeling, “Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii,” Tellus 25, 538–551 (1976).

Kiley, C. M.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Killinger, D. K.

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
[CrossRef]

Killinger, D. W.

Koch, G. J.

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

G. J. Koch, “Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases,” Ph.D. dissertation (Old Dominion University, Norfolk, Virginia, 2001).

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

Korb, C. L.

Learner, R. C. M.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Lehmann, S.

S. Lehmann, H. Linne, J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.

Linne, H.

S. Lehmann, H. Linne, J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.

Lockard, G. E.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

McCarthy, J. C.

Menyuk, C. R.

Menyuk, N.

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
[CrossRef]

Menzies, R. T.

R. T. Menzies, D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.

Modlin, E. A.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

Neff, B. R.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

Newnham, D. A.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Nolf, S. R.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

O’Brien, D. M.

P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Petros, M.

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

Pruitt, J.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

Rayner, P. J.

P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Refaat, T. F.

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

Rye, B. J.

Sachse, G. W.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Schmidt, K.

J. Kaiser, K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
[CrossRef]

Sharp, W. E.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

Shermaul, R.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Singh, U. N.

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

Smith, K. M.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Streets, D. G.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Strow, L. L.

Taczak, T. M.

Tennyson, J.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Thornhill, K. L.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Tratt, D. M.

R. T. Menzies, D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.

Tsutsumi, Y.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Vay, S. A.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

Webster, C. R.

R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.

Weng, C. Y.

Westberg, D. J.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

Whiting, G. P.

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

Williams-Byrd, J. A.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

Woo, J.-H.

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Yu, J.

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

Yuen, E. Y.

Zobov, N. F.

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

Appl. Opt. (9)

T. M. Taczak, D. W. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, C. Y. Weng, “Frequency-doubled CO2 lidar measurement and diode laser spectroscopy of atmospheric CO2,” Appl. Opt. 22, 2592–2602 (1983).
[CrossRef]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

G. J. Koch, M. Petros, J. Yu, U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

R. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurement of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
[CrossRef] [PubMed]

B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. K. Killinger, N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
[CrossRef]

Atmos. Environ. (1)

S. B. Idso, C. D. Idso, R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
[CrossRef]

Geophys. Res. Lett. (2)

P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
[CrossRef]

J. Geophys. Res. (3)

B. E. Anderson, G. L. Gregory, J. E. Collins, G. W. Sachse, T. J. Conway, G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
[CrossRef]

S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, D. R. Blake, D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
[CrossRef]

S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi: (2003).
[CrossRef]

Opt. Lett. (2)

Science (1)

J. Kaiser, K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
[CrossRef]

Tellus (1)

C. D. Keeling, “Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii,” Tellus 25, 538–551 (1976).

Other (8)

R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.

G. J. Koch, “Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases,” Ph.D. dissertation (Old Dominion University, Norfolk, Virginia, 2001).

T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.

B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE5154, 118–125 (2003).
[CrossRef]

S. Lehmann, H. Linne, J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 194–196.

USF HITRAN-PC. Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).

J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of the lidar. PBS, polarizing beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Signals associated with wavelength alternation and tuning. A square wave (middle trace) is applied to the cw master oscillator PZT to make the wavelength alternatively jump on and off the absorption line center. Transmission through the reference gas cell (upper trace) goes to a minimum at peak absorption and can be used as an indication of fine-tuning to the line center. The wavelength transitions are timed to occur between laser pulses (lower trace).

Fig. 3
Fig. 3

Spectrum of atmospheric returns for a 200-m-long range bin starting at a 2500-m range for both on- and off-line pulses. We averaged 1000 pulses for each case. A passband set by an antialiasing filter is centered at the 105-MHz intermediate frequency. To determine signal power, the spectra are integrated over a threshold just above the noise floor.

Fig. 4
Fig. 4

Power in the atmospheric return for on- and off-line pulses. We averaged 1000 pulses for each wavelength.

Fig. 5
Fig. 5

Line-of-sight wind speed measured every 20 min from 6:00 a.m. to 2:00 p.m. 22 August 2003. Positive speed is toward the lidar, negative is away.

Fig. 6
Fig. 6

Mean and standard deviation of differential optical thickness for six repeated measurement sets of 1000 pulse pairs.

Fig. 7
Fig. 7

Mean and standard deviation of differential optical thickness for 60 repeated measurement sets of 100 pulse pairs.

Fig. 8
Fig. 8

CO2 concentration measured by DIAL and LI-COR in situ sensor from 6:00 a.m. to 2:00 p.m. 22 August 2003. Ranges for the DIAL calculation were taken at 0 and 1200 m. The first DIAL measurement at 6:00 was calibrated to the LI-COR measurement to compare the trend of the DIAL versus the LI-COR. Sunrise was at 6:28 a.m.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n=12ΔσR2-R1lnSonR1SoffR2SonR2SoffR1,
ϕ=lnSoffRSonR.

Metrics