Abstract

It has been shown experimentally and theoretically that Q-switching behavior is possible in a flash-lamp-pumped Cr-doped LiSrAlF6 (Cr3+:LiSAF) laser that consists only of two mirrors, a laser crystal, and a diaphragm. We demonstrate that insertion into a laser of a binary diffractive optical element can speed up the dynamics of the self-Q-switched laser such that the output pulse is shortened (from 60 to 33 ns) and its energy is increased (from 36 to 54 mJ). The self-Q-switching behavior of the laser has the ability to produce a laser pulse with a duration that one can adjust continuously from 60 to 700 ns just by opening the diaphragm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 8.
    [CrossRef]
  2. B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
    [CrossRef]
  3. B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998).
    [CrossRef]
  4. M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
    [CrossRef]
  5. D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967).
    [CrossRef]
  6. A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968).
    [CrossRef]
  7. K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
    [CrossRef]
  8. N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).
  9. O. Svelto, Principles of Lasers (Plenum, New York, 1998), Chap. 7.
    [CrossRef]
  10. G. Stéphan, M. Trümper, “Inhomogeneity effects in a gas laser,” Phys. Rev. A 28, 2344–2362 (1983).
    [CrossRef]
  11. R. Menzel, Photonics (Springer-Verlag, Berlin, 2001), Chap. 2, p. 61.
  12. K. Aït-Ameur, “Influence of the longitudinal position of an aperture inside a cavity on the transverse mode discrimination,” Appl. Opt. 32, 7366–7372 (1993).
    [CrossRef] [PubMed]
  13. K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
    [CrossRef]
  14. A. Caprara, G. C. Reali, “Time varying M2 in Q-switched lasers,” Opt. Quantum Electron. 24, 1001–1009 (1992).
    [CrossRef]
  15. A. Caprara, G. C. Reali, “Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser,” Opt. Lett. 17, 414–416 (1992).
    [CrossRef] [PubMed]
  16. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.
  17. J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19, 108–110 (1994).
    [CrossRef] [PubMed]
  18. J. R. Leger, D. Chen, G. Mowry, “Design and performance of diffractive optics for custom laser resonators,” Appl. Opt. 34, 2498–2509 (1995).
    [CrossRef] [PubMed]
  19. K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
    [CrossRef]
  20. J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).
  21. S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
    [CrossRef]
  22. J. Bourderionnet, N. Huot, A. Brignon, J. P. Huignard, “Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate,” Opt. Lett. 25, 1579–1581 (2000).
    [CrossRef]
  23. U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).
  24. A. A. Napartovitch, N. N. Elkin, V. N. Troschieva, D. V. Vysotski, J. R. Leger, “Simplified intracavity phase plates for increasing laser-mode discrimination,” Appl. Opt. 38, 3025–3029 (1999).
    [CrossRef]
  25. J. Cordingley, “Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers,” Appl. Opt. 32, 2538–2542 (1993).
    [CrossRef] [PubMed]
  26. R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
    [CrossRef]
  27. M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001).
    [CrossRef]
  28. K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
    [CrossRef]
  29. K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002).
    [CrossRef]
  30. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993).
    [CrossRef] [PubMed]
  31. H. J. Caufield, D. Dvore, J. W. Goodman, W. T. Rhodes, “Eigenvector determination by noncoherent optical methods,” Appl. Opt. 20, 2263–2265 (1981).
    [CrossRef]
  32. K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988).
    [CrossRef]
  33. K. Aït-Ameur, H. Ladjouze, G. Stéphan, “Diffraction effects in a resonant cavity with two nonequivalent apertures,” Appl. Opt. 31, 397–405 (1992).
    [CrossRef] [PubMed]
  34. S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
    [CrossRef]
  35. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
    [CrossRef]

2003 (1)

K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
[CrossRef]

2002 (1)

K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002).
[CrossRef]

2001 (2)

M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

2000 (4)

J. Bourderionnet, N. Huot, A. Brignon, J. P. Huignard, “Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate,” Opt. Lett. 25, 1579–1581 (2000).
[CrossRef]

K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
[CrossRef]

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

1999 (3)

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).

A. A. Napartovitch, N. N. Elkin, V. N. Troschieva, D. V. Vysotski, J. R. Leger, “Simplified intracavity phase plates for increasing laser-mode discrimination,” Appl. Opt. 38, 3025–3029 (1999).
[CrossRef]

1998 (2)

B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

1997 (1)

R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
[CrossRef]

1996 (1)

B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (3)

1992 (3)

1988 (1)

K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988).
[CrossRef]

1983 (1)

G. Stéphan, M. Trümper, “Inhomogeneity effects in a gas laser,” Phys. Rev. A 28, 2344–2362 (1983).
[CrossRef]

1982 (1)

K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
[CrossRef]

1981 (1)

1968 (1)

A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968).
[CrossRef]

1967 (1)

D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967).
[CrossRef]

Aït-Ameur,

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Aït-Ameur, K.

K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
[CrossRef]

K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
[CrossRef]

R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
[CrossRef]

K. Aït-Ameur, “Influence of the longitudinal position of an aperture inside a cavity on the transverse mode discrimination,” Appl. Opt. 32, 7366–7372 (1993).
[CrossRef] [PubMed]

K. Aït-Ameur, H. Ladjouze, G. Stéphan, “Diffraction effects in a resonant cavity with two nonequivalent apertures,” Appl. Opt. 31, 397–405 (1992).
[CrossRef] [PubMed]

K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988).
[CrossRef]

K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
[CrossRef]

Ballüder, K.

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

Berkley, D. A.

D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967).
[CrossRef]

Bett, T. H.

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

Borghi, R.

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

Bourderionnet, J.

Bourouis, R.

R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
[CrossRef]

Brignon, A.

Brunel, M.

K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
[CrossRef]

Caprara, A.

Caufield, H. J.

Chen, D.

Cordingley, J.

Doualan, J. L.

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Dvore, D.

Elkin, N. N.

Flamholz, A.

A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968).
[CrossRef]

Fromager, M.

M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001).
[CrossRef]

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Goodman, J. W.

Gori, F.

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

Hirth, A.

B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Huignard, J. P.

Huot, N.

Kaivola, M.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Kajava, T.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Kerdja, T.

K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
[CrossRef]

K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 8.
[CrossRef]

Kuittinen, M.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Laakkonen, P.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Ladjouze, H.

R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
[CrossRef]

K. Aït-Ameur, H. Ladjouze, G. Stéphan, “Diffraction effects in a resonant cavity with two nonequivalent apertures,” Appl. Opt. 31, 397–405 (1992).
[CrossRef] [PubMed]

K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988).
[CrossRef]

Leger, J.

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Leger, J. R.

Louhibi, D.

K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
[CrossRef]

K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
[CrossRef]

Makki, S.

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

McInnes, H. A.

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

Menzel, R.

R. Menzel, Photonics (Springer-Verlag, Berlin, 2001), Chap. 2, p. 61.

Moncorgé, R.

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Mowry, G.

Napartovitch, A. A.

Pääkkönen, P.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Passilly, N.

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Quarles, G.

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

Reali, G. C.

Rhodes, W. T.

Sanchez, F.

K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
[CrossRef]

Santarsiero, M.

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993).
[CrossRef] [PubMed]

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.

Simonen, J.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Stéphan, G.

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, New York, 1998), Chap. 7.
[CrossRef]

Taghizadeh, M. R.

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

Troschieva, V. N.

Trümper, M.

G. Stéphan, M. Trümper, “Inhomogeneity effects in a gas laser,” Phys. Rev. A 28, 2344–2362 (1983).
[CrossRef]

Turunen, J.

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

Vicalvi, S.

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

Vysotski, D. V.

Wang, Z.

Weber, B. C.

B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

Wolga, G. J.

A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968).
[CrossRef]

D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967).
[CrossRef]

Wyrowski, F.

U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).

Zeitner, U. D.

U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).

Appl. Opt. (7)

IEEE J. Quantum Electron. (2)

S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998).
[CrossRef]

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

J. Appl. Phys. (2)

D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967).
[CrossRef]

A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968).
[CrossRef]

J. Mod. Opt. (5)

K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000).
[CrossRef]

J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).

U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).

K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002).
[CrossRef]

R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997).
[CrossRef]

J. Phys. D (1)

K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988).
[CrossRef]

J. Phys. D. (1)

K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982).
[CrossRef]

Opt. Commun. (6)

B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003).
[CrossRef]

M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001).
[CrossRef]

K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

A. Caprara, G. C. Reali, “Time varying M2 in Q-switched lasers,” Opt. Quantum Electron. 24, 1001–1009 (1992).
[CrossRef]

Phys. Rev. A (1)

G. Stéphan, M. Trümper, “Inhomogeneity effects in a gas laser,” Phys. Rev. A 28, 2344–2362 (1983).
[CrossRef]

Other (6)

R. Menzel, Photonics (Springer-Verlag, Berlin, 2001), Chap. 2, p. 61.

N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).

O. Svelto, Principles of Lasers (Plenum, New York, 1998), Chap. 7.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 8.
[CrossRef]

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Sketch of the apertured laser: 1, plane mirror of reflectivity R 1; 2, circular aperture of radius ρ H ; 3, laser rod of length L rod; 4, concave mirror of radius of curvature R and of reflectivity R 2. (b) Geometry of the equivalent cavity. The radial variation of the excited population gives rise to a lensing medium whose equivalent thin lens of focal length f is assumed to be located at the entrance of the laser rod.

Fig. 2
Fig. 2

Variations of |Γ0|2, the aperture round-trip transmission as a function of |f|, for K > 0 (negative lensing) and K < 0 (positive lensing).

Fig. 3
Fig. 3

Variations of Gaussian mode volume V G (dotted curve) and of fundamental mode volume V m for two values of radius ρ H = 0.85 mm (solid curve) and ρ H = 1.1 mm (dashed curve) as a function of geometrical parameter g.

Fig. 4
Fig. 4

Variations of the beam quality factor, as a function of g, for two values of radius aperture ρ H : (a) M p 2, characterizing the beam emerging from the plane mirror, and (b) M c 2, corresponding to the beam emerging from the apertured concave mirror.

Fig. 5
Fig. 5

Characteristics of the laser pulse: (a) variations of the pulse width (FWHM) as a function of Y H i , (b) variations of the pulse energy as a function of Y H i for K = 10-4 (circles), for K = 5 × 10-4 (squares), and without the lensing effect (triangles).

Fig. 6
Fig. 6

Variations of electrical pumping energy E p supplied to the flash lamp as a function of initial beam truncation ratio Y H i without the lensing effect (triangles) and for K = 10-4 to K = 5 × 10-4 (squares).

Fig. 7
Fig. 7

Time evolution for Y H i = 0.8 and E p = 20.8 J of (a) instantaneous output power (solid curve) and M p 2 (dashed curve) and (b) geometrical parameter g (solid curve) and fundamental mode volume V m (dashed curve).

Fig. 8
Fig. 8

Time evolution of |Γ0|2 with a phase aperture (solid curves) and without a phase aperture (dashed curves): (a) Y H i = 0.8 and Y PI i = 3.4, (b) Y H i = 0.6 and Y PI i = 1.9.

Fig. 9
Fig. 9

Same as Fig. 7, except that the laser cavity includes a phase aperture (Y PI i = 3.4) against the plane mirror. The pump energy is E p = 22 J.

Tables (1)

Tables Icon

Table 1 Pulse Characteristics of the Self-Q-Switched Cr3+:LiSAF Laser with and without a Phase Aperture (PA)

Equations (63)

Equations on this page are rendered with MathJax. Learn more.

Ndρ, tNi-Ni-Ntexp-2ρ2/Wc2t,
Δnρ, t=K Ndρ, tNT,
K=5×10-4.
ft=-2Wc2tKβtLrod.
βt=Ni-NtNT.
gt=1-L1ft+1R,
Wc2t=λLπ1gt1-gt1/2.
Nt=-NΦσc-Nτ+WpNT-N,
Φt=ΦNσcε1-δtR+Nτ ε2,
δ=-lnR1R2+δd,
YH=ρH/Wc.
Efρ, z=expikz-ωtp fpGfpρ, z,
Ebρ, z=expik2L-z-ωtp bpGbpρ, z.
fp=m Mpmfm.
δd=-ln|Γ0|2.
Bt=π2Ptλ2M2t2,
Pt=TΦtVmtELtR,
VG=0L Szdz.
VG=λL22g1-g1/2+131-gg1/2.
Wp=ηpEp.
YPI=ρPI/W0,
Gfpρ, z=2π1/21W Lp2ρ2W2exp-ρ2W2×exp+ikρ22Rc-2p+1ϕ
Gbpρ, z=2π1/21W Lp2ρ2W2exp-ρ2W2×exp-ikρ22Rc-2p+1ϕ,
W2z=W021+z/z02,
Rcz=z1+z0/z2,
ϕz=arctanz/z0,
Efρ, z=expikz-ωtp fpGfpρ, z,
Ebρ, z=expik2L-z-ωtp bpGbpρ, z.
2π 0 Gfpρ, zGfm*ρ, zρdρ=δpm,
2π 0 Gbpρ, zGbm*ρ, zρdρ=δpm.
τHρ=1ρρH0ρ>ρH.
Ebρ, L=expikLp bpGbpρ, L.
Ebρ, L=τHρR2 Efρ, L.
bp=2πR2m fm0ρA Gbp*ρ, LGfmρ, Lρdρ.
bp=R2m CpmHfm exp-2ip+m+1ϕL,
CpmH=02YH2exp-XLpXLmXdX.
fp=R1 exp2ikLbp.
fp=m Mpmfm,
Mpm=R1R2 CpmH exp2ikL-p+m+1ϕL.
Mu=Γu.
LFM=1-|Γ0|2.
Efρ, 0=τHρR1 Ebρ, 0.
fm=R1 exp2ikLp bpCpmH.
Ebρ, L=R2 Ebρ, L.
bp=R2 exp2ikLexp-2i2p+1ϕLfp.
Mpm=R1R2 CpmH exp2ikL-2p+1ϕL,
bp=m Mpmbm.
τPIρ=+iρρPI+1ρ>ρPI.
Efρ, 0=R1 τPI2ρEbρ, 0.
fn=2πR1 exp2ikL×-0ρPIp bpGbpρ, 0Gfn*ρ, 0ρdρ+ρPIp bpGbpρ, 0Gfn*ρ, 0ρdρ.
CpnPI=02YPI2 exp-XLpXLnXdX.
fn=R1 exp2ikLp bpδpn-2CpnPI.
Mpm=R1R2 exp2ikL-ϕLnδpn-2CpnPICnmH exp-2in+mϕL.
Iρ, z=|Efρ, z+Ebρ, z|2,
0Weff Iρ, zρdρ=0.86 0 Iρ, zρdρ.
Vm=π2k=1100 Weff2zkΔz.
1hp=1-R1 bp,
2hp=1-R2q CqpHfq exp2ip-qϕL.
1hp=1-R1q CqpHbq,
2hp=1-R2 fp.
1hp=1-R1qδqp+i-1CqpPIbq,
2hp=1-R2q CqpHfq exp2ip-qϕL.
Mout2=p2p+1|Dp|22-4pq pDp*Dqrδp,q+121/2,

Metrics