Abstract

We have investigated the in-plane switching of cholesteric liquid crystals for reflective wavelength shifters for visible and near-infrared applications. These devices are based on the elongation of the cholesteric pitch by an electric field perpendicular to the helical axis. The transmission notch-reflection peak position can be tuned continuously to a longer wavelength (redshift) by application of an in-plane electric field. The helix is completely unwound when the electric field is higher than the cholesteric-to-nematic transition field, and the sample is transformed to a transparent state. We have investigated the electro-optic performance of in-plane switching of cholesteric samples and developed a simple phenomenological model to describe the underlying electro-optic phenomena.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
    [CrossRef]
  2. B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
    [CrossRef]
  3. A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
    [CrossRef]
  4. W. J. Harper, “Voltage effects in cholesteric liquid crystals,” Mol. Cryst. 1, 325–332 (1966).
    [CrossRef]
  5. J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968).
    [CrossRef]
  6. P.-G. de Gennes, “Calcul de la distorsion d’unc structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968).
    [CrossRef]
  7. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968).
    [CrossRef]
  8. R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14, 208–209 (1969).
    [CrossRef]
  9. F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24, 209–212 (1970).
    [CrossRef]
  10. D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
    [CrossRef]
  11. S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
    [CrossRef]
  12. S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
    [CrossRef]
  13. S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
    [CrossRef]
  14. T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” Proc. Soc. Inf. Display 14, 110–113 (1973).
  15. M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).
  16. M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
    [CrossRef]
  17. H. Nakamura, “A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,” Jpn. J. Appl. Phys. 40, 6435–6440 (2001).
    [CrossRef]
  18. H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).
  19. S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
    [CrossRef]
  20. Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
    [CrossRef]
  21. H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).
  22. W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
    [CrossRef]
  23. V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001).
    [CrossRef]
  24. C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000).
    [CrossRef]

2002 (2)

S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
[CrossRef]

H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).

2001 (4)

V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001).
[CrossRef]

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

H. Nakamura, “A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,” Jpn. J. Appl. Phys. 40, 6435–6440 (2001).
[CrossRef]

2000 (2)

S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000).
[CrossRef]

1999 (2)

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

1998 (1)

S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
[CrossRef]

1997 (2)

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

1995 (2)

M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

1994 (1)

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

1973 (1)

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” Proc. Soc. Inf. Display 14, 110–113 (1973).

1970 (1)

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24, 209–212 (1970).
[CrossRef]

1969 (1)

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14, 208–209 (1969).
[CrossRef]

1968 (3)

J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968).
[CrossRef]

P.-G. de Gennes, “Calcul de la distorsion d’unc structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968).
[CrossRef]

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968).
[CrossRef]

1966 (1)

W. J. Harper, “Voltage effects in cholesteric liquid crystals,” Mol. Cryst. 1, 325–332 (1966).
[CrossRef]

Akahane, T.

S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
[CrossRef]

Akins, R. B.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Asada, S.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Bos, P.

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Bos, P. J.

C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000).
[CrossRef]

Bowley, C. C.

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

Chien, L.-C.

S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Crawford, G. P.

H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

de Gennes, P.-G.

P.-G. de Gennes, “Calcul de la distorsion d’unc structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968).
[CrossRef]

Desai, P.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Escuti, M. J.

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

Faris, S.

H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Fritz, W. J.

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Hansen, J. R.

J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968).
[CrossRef]

Harper, W. J.

W. J. Harper, “Voltage effects in cholesteric liquid crystals,” Mol. Cryst. 1, 325–332 (1966).
[CrossRef]

Hochbaum, A.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Hoke, C. D.

C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000).
[CrossRef]

Ishikawa, T.

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

Jiang, Y.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Kahn, F. J.

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24, 209–212 (1970).
[CrossRef]

Kang, S.

S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

Kato, N.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Kimura, M.

S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
[CrossRef]

Kondo, K.

M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).

Lavrentovich, O. D.

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

Lavrentovich, O.D.

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Lee, S.

S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
[CrossRef]

Li, L.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Li, Z.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Lu, Z.

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Meyer, R. B.

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14, 208–209 (1969).
[CrossRef]

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968).
[CrossRef]

Munoz, A. F.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Nakamura, H.

H. Nakamura, “A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,” Jpn. J. Appl. Phys. 40, 6435–6440 (2001).
[CrossRef]

Oh-e, M.

M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).

Ohta, M.

M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).

Oka, S.

S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
[CrossRef]

Palffy-Muhoray, P.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Reshetnyak, V.

V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001).
[CrossRef]

Schneeberger, R. J.

J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968).
[CrossRef]

Shevchuk, O.

V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001).
[CrossRef]

Shimojo, T.

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” Proc. Soc. Inf. Display 14, 110–113 (1973).

Shiyanovskii, S. V.

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

Shiyanovskii, S.V.

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Sprunt, S.

S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
[CrossRef]

St. John, W. D.

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Subacius, D.

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Taheri, B.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Takubo, Y.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Tsuda, K.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Tsukane, M.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Tsurugi, T.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Twieg, R. J.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Vartak, S.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Ventouris, G.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Voloschenko, D.

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Wakemoto, H.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Xianyu, H.

H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).

Yamamoto, Y.

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

Yang, D. K.

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Yang, D.-K.

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Zumer, S.

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

Appl. Phys. Lett. (7)

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968).
[CrossRef]

R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14, 208–209 (1969).
[CrossRef]

D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998).
[CrossRef]

S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[CrossRef]

S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002).
[CrossRef]

Asia Display (1)

M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).

IEEE Trans. Electron Dev. (1)

J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968).
[CrossRef]

J. Appl. Phys. (2)

D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000).
[CrossRef]

J. Mol. Liq. (1)

V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Nakamura, “A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,” Jpn. J. Appl. Phys. 40, 6435–6440 (2001).
[CrossRef]

Mol. Cryst. (1)

W. J. Harper, “Voltage effects in cholesteric liquid crystals,” Mol. Cryst. 1, 325–332 (1966).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001).
[CrossRef]

Phys. Rev. E (1)

W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24, 209–212 (1970).
[CrossRef]

Proc. Am. Soc. Inf. Display (1)

H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).

Proc. Soc. Inf. Display (1)

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” Proc. Soc. Inf. Display 14, 110–113 (1973).

SID Digest (2)

H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999).
[CrossRef]

Solid State Commun. (1)

P.-G. de Gennes, “Calcul de la distorsion d’unc structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968).
[CrossRef]

Other (1)

Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Cell configuration of the wavelength shifter, (b) pitch elongation and redshift of the transmission notch by the electric field, (c) electrically induced cholesteric-to-nematic phase transition.

Fig. 2
Fig. 2

(a) Layout of the interdigitated electrodes, (b) microscope photograph of the interdigitated electrodes.

Fig. 3
Fig. 3

Electric field configuration in a spatial period in the z direction.

Fig. 4
Fig. 4

Pitch length as a function of the electric field: (a) de Gennes model and the strong anchoring model and (b) twist angle θ as a function of 2z/P(E) at several electric field values in the strong-anchoring model. The following parameters were adopted for these calculations: P 0 = 282 nm, K 22/Δε = 0.44 × 10-12 N, and m = 35 (for strong anchoring).

Fig. 5
Fig. 5

Reflective microscope photograph of the visible shifter; electric field intensity, 3.35 V/μm.

Fig. 6
Fig. 6

(a) Reflection spectra of the visible shifter at different voltages. (b) Photos of the visible reflector at several electric field strengths.

Fig. 7
Fig. 7

(a) Normalized peak reflectance and FWHM as a function of electric field, (b) normalized reflection spectra at three field strengths of the visible reflector.

Fig. 8
Fig. 8

Reflection peak wavelength as a function of the electric field of the visible sample.

Fig. 9
Fig. 9

Chromaticity diagram of a single pixel of the reflective visible sample.

Fig. 10
Fig. 10

Polarized microscope photograph of the IR sample. The electric field intensity is 2.76 V/μm.

Fig. 11
Fig. 11

(a) Transmission spectra of the IR sample at several voltages, (b) notch transmittance and FWHM as a function of electric field strength.

Fig. 12
Fig. 12

Notch position as a function of electric field in the IR sample.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ex=n=1 cnnπLsinnπL xexp-nπL |z|,Ez=n=1 cnnπLcosnπL xexp-nπL |z|,
cn=VLbnπ2cosnπa2L- cosnπa+2b2L.
nx=cos θz, ny=sin θz, nz=0.
F=12 K22θz-q02-Δεε02E2 sin2 θdz,
ξ22θz2+sin θ cos θ=0,
ξ2θz2=1k2-sin2 θ,
P/2=0πzθ dθ=2ξk 0π/2dθ1-k2sin2 θ1/2=2ξkKk,
gF½  K22q02dz=1-πq0P+2hq02P×J-h21+C,C1/k2-1,J2 0πC+cos2 θ1/2 dθ dJdC=P2ξ,
1q0ξ=πk2Ek
EC=π2P0K22ε0Δε1/2.
qd=θd-θ0+mπ, m an integer,
P/2=d/m, m an integer.
d/m=2ξKkm, m an integer,
θz=0zθz dz=1ξk0z1-k2 sin2 θt1/2 dt.

Metrics