Abstract

The measurement accuracies of modern resonance fluorescence and Rayleigh temperature lidars are limited primarily by photon noise. The narrowband three-frequency fluorescence technique is shown to perform within a few decibels of the theoretical optimum at night for both temperature and wind observations. These systems also exhibit good performance during the day because the fluorescence wavelengths of Na, Fe, K, Ca, and Ca+ all correspond to strong solar Fraunhofer lines, where sky brightness is attenuated by a factor of 5 or more. Whereas Na systems achieve the highest signal-to-noise ratios for mesopause region observations (80–105 km), the three-frequency Fe system is attractive because it performs well as both a fluorescence and a Rayleigh lidar throughout the middle atmosphere at approximately 25–110 km.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Elterman, “The measurement of the stratospheric density distribution with the search light technique,” J. Geophys. Res. 56, 509–520 (1951).
    [CrossRef]
  2. L. B. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
    [CrossRef]
  3. L. B. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1951).
    [CrossRef]
  4. D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
    [CrossRef] [PubMed]
  5. A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
    [CrossRef]
  6. M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
    [CrossRef]
  7. Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
    [CrossRef]
  8. R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
    [CrossRef]
  9. X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
    [CrossRef] [PubMed]
  10. U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996).
    [CrossRef]
  11. R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000).
    [CrossRef]
  12. C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).
  13. W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).
  14. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).
  15. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of Na narrowband wind-temperature lidar systems,” Appl. Opt. 34, 480–498 (1995).
    [CrossRef] [PubMed]
  16. G. C. Papen, C. S. Gardner, W. M. Pfenninger, “Analysis of a potassium lidar system for upper-atmosphere wind-temperature measurements,” Appl. Opt. 34, 6950–6958 (1995).
    [CrossRef] [PubMed]
  17. J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
    [CrossRef]
  18. J. Lautenbach, J. Höffner, “Scanning iron temperature lidar for mesopause temperature observation,” Appl. Opt. 43, 4559–4563 (2004).
    [CrossRef] [PubMed]
  19. A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
    [CrossRef]
  20. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  21. C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
    [CrossRef]
  22. R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
    [CrossRef]
  23. C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
    [CrossRef]
  24. J. A. Gelbwachs, “Iron Boltzmann factor lidar: proposed new remote sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
    [CrossRef] [PubMed]
  25. C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
    [CrossRef]
  26. C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
    [CrossRef]
  27. J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
    [CrossRef]
  28. R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999).
    [CrossRef]
  29. T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
    [CrossRef]
  30. S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003).
    [CrossRef]
  31. V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
    [CrossRef]
  32. J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
    [CrossRef]
  33. C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
    [CrossRef]
  34. J. Qian, C. S. Gardner, “Simultaneous lidar measurements of mesospheric Ca, Na and temperature profiles at Urbana, IL,” J. Geophys. Res. 100, 7753–7461 (1995).
    [CrossRef]
  35. M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
    [CrossRef]
  36. M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
    [CrossRef]
  37. C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
    [CrossRef]
  38. R. Beer, “Transmission through the atmosphere,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis (Wiley, New York, 1985), pp. 85–162.
  39. A. Mercherikunnel, C. H. Duncan, “Total and spectral solar irradiance measured at ground surface,” Appl. Opt. 21, 554–556 (1982).
    [CrossRef]
  40. W. K. Pratt, Laser Communication Systems (Wiley, New York, 1968).
  41. L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).
  42. J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962).
    [CrossRef]
  43. M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
    [CrossRef]
  44. C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998).
    [CrossRef]
  45. C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
    [CrossRef]
  46. J. S. Friedman, “Tropical mesopause climatology over Arecibo Observatory,” Geophys. Res. Lett. 30, doi:10.1029/2003GL016966 (2003).
    [CrossRef]
  47. C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).
  48. J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.
  49. X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
    [CrossRef]
  50. C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  51. D. L. Snyder, Random Point Processes (Wiley, New York, 1975).

2004 (3)

2003 (5)

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
[CrossRef]

W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).

S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003).
[CrossRef]

J. S. Friedman, “Tropical mesopause climatology over Arecibo Observatory,” Geophys. Res. Lett. 30, doi:10.1029/2003GL016966 (2003).
[CrossRef]

2002 (5)

C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[CrossRef] [PubMed]

C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

2001 (1)

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

2000 (3)

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000).
[CrossRef]

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

1999 (2)

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999).
[CrossRef]

1998 (2)

V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998).
[CrossRef]

1996 (2)

M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
[CrossRef]

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996).
[CrossRef]

1995 (3)

1994 (2)

J. A. Gelbwachs, “Iron Boltzmann factor lidar: proposed new remote sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
[CrossRef] [PubMed]

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

1993 (2)

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

1992 (1)

M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

1991 (3)

R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
[CrossRef]

1990 (1)

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

1989 (2)

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
[CrossRef]

1985 (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1982 (1)

1979 (1)

A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

1969 (1)

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

1962 (1)

J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

1953 (1)

L. B. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

1951 (2)

L. B. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1951).
[CrossRef]

L. B. Elterman, “The measurement of the stratospheric density distribution with the search light technique,” J. Geophys. Res. 56, 509–520 (1951).
[CrossRef]

Alpers, M.

C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
[CrossRef]

Alvarez, R. J.

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Beer, R.

R. Beer, “Transmission through the atmosphere,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis (Wiley, New York, 1985), pp. 85–162.

Bhattachacharyya, S. K.

A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

Bills, R. E.

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Bowman, M. R.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Bruneau, D.

Castleberg, P. A.

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

Chanin, M. L.

A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
[CrossRef]

Chen, S.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Chu, X.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[CrossRef] [PubMed]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Clilverd, M. A.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

Collins, S. C.

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

Conde, M.

M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Corney, A.

A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).

Delbouille, L.

L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).

Delgado, R.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

Diettrich, J. C.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

Duncan, C. H.

Elterman, L. B.

L. B. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

L. B. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1951).
[CrossRef]

L. B. Elterman, “The measurement of the stratospheric density distribution with the search light technique,” J. Geophys. Res. 56, 509–520 (1951).
[CrossRef]

Eska, V.

V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

Espy, P. J.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

Franke, S. F.

R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Fricke-Begemann, C.

C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.

Friedman, J. S.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

J. S. Friedman, “Tropical mesopause climatology over Arecibo Observatory,” Geophys. Res. Lett. 30, doi:10.1029/2003GL016966 (2003).
[CrossRef]

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

Garcia, R. R.

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

Gardner, C. S.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).

Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
[CrossRef]

X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[CrossRef] [PubMed]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000).
[CrossRef]

R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999).
[CrossRef]

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998).
[CrossRef]

G. C. Papen, C. S. Gardner, W. M. Pfenninger, “Analysis of a potassium lidar system for upper-atmosphere wind-temperature measurements,” Appl. Opt. 34, 6950–6958 (1995).
[CrossRef] [PubMed]

J. Qian, C. S. Gardner, “Simultaneous lidar measurements of mesospheric Ca, Na and temperature profiles at Urbana, IL,” J. Geophys. Res. 100, 7753–7461 (1995).
[CrossRef]

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Garnier, A.

Gelbwachs, J.

Gelbwachs, J. A.

Gerding, M.

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

Gibson, A. J.

A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Grainger, J. F.

J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Granier, C.

C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
[CrossRef]

Greet, P.

M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Hagan, M. E.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

Hauchecorne, A.

A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
[CrossRef]

Hedin, J.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Hertzog, A.

Hoffner, J.

C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).

C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996).
[CrossRef]

M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
[CrossRef]

Höffner, J.

J. Lautenbach, J. Höffner, “Scanning iron temperature lidar for mesopause temperature observation,” Appl. Opt. 43, 4559–4563 (2004).
[CrossRef] [PubMed]

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.

Hu, Z.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Jacka, F.

M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Jarvis, M. J.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

Jegou, J. P.

C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
[CrossRef]

Kane, T. J.

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

Keckhut, P.

A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
[CrossRef]

Krueger, D. A.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

Krueger, D. W.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Latifi, H.

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Lautenbach, J.

J. Lautenbach, J. Höffner, “Scanning iron temperature lidar for mesopause temperature observation,” Appl. Opt. 43, 4559–4563 (2004).
[CrossRef] [PubMed]

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.

Liu, A.

Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
[CrossRef]

Megie, G.

C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
[CrossRef]

Menzel, P.

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.

Mercherikunnel, A.

Neven, L.

L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).

Nott, G. J.

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

Pan, W.

W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).

X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[CrossRef] [PubMed]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Papen, G.

X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[CrossRef] [PubMed]

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

Papen, G. C.

Pfenninger, W. M.

Plane, J. M. C.

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

Porteneuve, J.

Pratt, W. K.

W. K. Pratt, Laser Communication Systems (Wiley, New York, 1968).

Pumphrey, H. C.

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

Qian, J.

J. Qian, C. S. Gardner, “Simultaneous lidar measurements of mesospheric Ca, Na and temperature profiles at Urbana, IL,” J. Geophys. Res. 100, 7753–7461 (1995).
[CrossRef]

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

Raizada, S.

S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003).
[CrossRef]

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Ring, J.

J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Roland, C.

L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).

Rollason, R. J.

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

Sandford, M. C. W.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Senft, D. C.

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

She, C. Y.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Sherman, J.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Simonich, D. M.

Snyder, D. L.

D. L. Snyder, Random Point Processes (Wiley, New York, 1975).

States, R. J.

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000).
[CrossRef]

R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999).
[CrossRef]

Tepley, C. A.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003).
[CrossRef]

Thomas, L.

A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

Vance, J. D.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Vasoli, V.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

von Zahn, U.

C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996).
[CrossRef]

M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
[CrossRef]

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

White, M. A.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Williams, B. P.

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

Yang, W.

C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998).
[CrossRef]

Yu, J.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Yu, J. R.

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Zhao, Y.

Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
[CrossRef]

Zhou, Q. H.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Appl. Opt. (7)

Geophys. Res. Lett. (11)

X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004).
[CrossRef]

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996).
[CrossRef]

C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003).
[CrossRef]

M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996).
[CrossRef]

J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002).
[CrossRef]

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

J. S. Friedman, “Tropical mesopause climatology over Arecibo Observatory,” Geophys. Res. Lett. 30, doi:10.1029/2003GL016966 (2003).
[CrossRef]

C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).

J. Atmos. Sci. (1)

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000).
[CrossRef]

J. Atmos. Solar Terr. Phys. (2)

Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003).
[CrossRef]

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res. (17)

R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).

W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).

L. B. Elterman, “The measurement of the stratospheric density distribution with the search light technique,” J. Geophys. Res. 56, 509–520 (1951).
[CrossRef]

L. B. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

L. B. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1951).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991).
[CrossRef]

C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989).
[CrossRef]

J. Qian, C. S. Gardner, “Simultaneous lidar measurements of mesospheric Ca, Na and temperature profiles at Urbana, IL,” J. Geophys. Res. 100, 7753–7461 (1995).
[CrossRef]

M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993).
[CrossRef]

V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999).
[CrossRef]

R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999).
[CrossRef]

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

Nature (3)

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Opt. Eng. (1)

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Other (6)

A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).

R. Beer, “Transmission through the atmosphere,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis (Wiley, New York, 1985), pp. 85–162.

W. K. Pratt, Laser Communication Systems (Wiley, New York, 1968).

L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.

D. L. Snyder, Random Point Processes (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic laser configuration for a modern resonance fluorescence wind-temperature lidar.

Fig. 2
Fig. 2

Spectrum of an isolated fluorescence line plotted for several values of (a) temperature and (b) radial velocity. Measurements of the backscattered signal are made by tuning the laser to line center frequency f S and to the wings of the spectrum at f S ± Δf, as indicated. The temperature and radial velocity are calculated by combining the measured signals according to Eqs. (6), (7), (24), and (25).

Fig. 3
Fig. 3

Rms temperature error plotted versus signal-to-noise ratio for various resonance fluorescence and Rayleigh lidar system configurations: (a) nighttime measurements, (b) daytime measurements.

Fig. 4
Fig. 4

Rms radial velocity error plotted versus signal-to-noise ratio for various resonance fluorescence lidar system configurations: three-frequency wind measurements.

Tables (13)

Tables Icon

Table 1 Atomic Parameters of Mesospheric Metals at T = 200 K and V = 0 m/s

Tables Icon

Table 2 Naturally Occurring Isotopes of Na, K, Fe, and Caa

Tables Icon

Table 3 System Parameters and Temperature Errors for Middle-Atmosphere Lidars at T = 200 K

Tables Icon

Table 4 Temperature and Wind Errors for Three-Frequency Fe Lidars at T = 200 K

Tables Icon

Table 5 Velocity Errors for Three-Frequency Systems Optimized for Daytime Temperature Measurements at T = 200 K

Tables Icon

Table 6 Measured Na Layer Parameters

Tables Icon

Table 7 Measured Fe Layer Parameters

Tables Icon

Table 8 Measured K Layer Parameters

Tables Icon

Table 9 Measured Ca Layer Parameters

Tables Icon

Table 10 Measured Ca+ Layer Parameters

Tables Icon

Table 11 Atmospheric Parameters

Tables Icon

Table 12 Relative Nighttime Signal-to-Noise Ratios

Tables Icon

Table 13 Relative Daytime Signal-to-Noise Ratios

Equations (77)

Equations on this page are rendered with MathJax. Learn more.

Sf=NS2πσDexp-f-fS+VR/λS2/2σD2,
σD2=kBTλS2mS=γT, γ=kBλS2mS,
ΔTrms2TNS=2TSNRS ΔVrmsλSσDNS=λSσDSNRS, theoretical minima at night.
NSf=NS exp-f-fS+VR/λS2/2σλ2,
σλ2=σL2+kBTλS2mS=σL2+γT,
RT=NS2fSNSfS+ΔfNSfS-Δf=expΔf2/σλ2.
T=Δf2γ ln RT-σL2/γ.
ΔTrms|3-freq=TσλΔf2ΔRTRT=TσλΔf21/εSNR++1/εSNR-+4/1-2εSNRS1/2=TσλΔf22εSNR±+41-2εSNRS1/2=TSNRS 2σλΔf2SNRS2εSNR±+11-2ε1/2,
SNRS=NS2z, fSNSz, fS+NBfS, SNR+=NS2z, fS+ΔfNSz, fS+Δf+NBfS+Δf, SNR-=NS2z, fS-ΔfNSz, fS-Δf+NBfS-Δf,
εopt=121+SNR±/SNRS1/2<0.5.
ΔTrms|3-freq=TSNRS 2σλΔf21+SNRS/SNR±1/2=TSNRS G3fα, β, G3fα, β=2α1+expα/4expα/2+β1+β1/2,
α=Δf2/σλ2, β=NSfS/NB.
ΔTrms|3-freq/night1.796TSNRS=359 KSNRS, β1, εopt=0.391, ΔTrms|3-freq/day3.591TSNRS=718 KSNRS β1, εopt=0.391.
ΔTrms|3-freq/night2.264TSNRS=453 KSNRS, β1, εopt=0.327.
ΔTrms|3-freq/day5.435TSNRS=1090 KSNRS, β1, εopt=0.464.
ΔTrms|Fe-BoltzTSNR372×GBT, SNR372/SNR374, GBT, SNR372/SNR374=T598.44K1+SNR372SNR3741/2.
ΔTrms|Fe-Boltz/night1.854TSNR372=371 KSNR372, β1, ΔTrms|Fe-Boltz/day9.956TSNR372=1990 KSNR372, β1.
dP=-ρAgdz
P=ρART/M.
Tz=Tz0ρAz0ρAz+MRzz0grρArρAzdr,
ΔTrms2z|RayleighT2zSNRRz+ρA2z0ρA2z×ΔT2z0+T2z0SNRRz0
SNRRz=NR2z, λNRz, λ+NBλ.
ΔTrms|RayleighT/SNRR.
RV=NSfS-ΔfNSfS+Δf=exp2ΔfλSσλ2 VR.
VR=λSΔf2lnRVlnRT=λSΔf2lnNSfS-ΔfNSf0+ΔflnNS2fSNSfS+ΔfNSfS-Δf.
ΔVrms|3-freq=σλΔf22εSNR±λSΔf22+V2+41-2εSNRS V21/2λSΔfSNRSσλΔf2SNRS/SNR±1/2+SNRS/SNR±1/2.
ΔVrms|3-freq/night1.465λSσDSNRS=253 m/sSNRS, β1, ΔVrms|3-freq/day2.539λSσDSNRS=438 m/sSNRS β1.
NSz=ηTA2PLτhc/λSσSρSzΔzAT4πz2,
SNRSNight=ηPLATτ4πhcTA2λSzS2 λSσSCS,
SNRS/SNRNaNightTA2λSzS2 λSσSCSTA2λNazNa2 λNaσNaCNa.
NRz=ηTA2PLτhc/λσRρAzΔzAT4πz2.
σRλρAz=3.692×10-31PzTz1λ4.0117.
SNRλ/SNR532Night=TA2λTA2λ532λ532λ3.0117.
NBλ=ηTSSkyλATΔλΩFOV2Δz/chc/λ rLτ,
SNRSDayNS2z, λS/NBλS, fluorescence lidars, SNRRDayNR2z, λ/NBλ, Rayleigh lidars.
SNRS/SNRNaDayλNaSSkyλNaλSSSkyλS×SNRS/SNRNaNight2, fluorescence lidars, SNRλ/SNR532Dayλ532SSkyλ532λSSkyλ×SNRλ/SNR532Night2, Rayleigh lidars.
pfi=Sfi0 Sfdf=exp-fi-fS+VR/λS2/2σD22πσD,
probf1, f2,fN|VR, T=i=1N pfidf.
lVR, T=i=1Nln pfi=-N lnγT-i=1Nfi-fS+VR/λS2/2γT.
VR=-λSNi=1Nfi-fS, T=σD2/γ=1γNi=1Nfi-fS+VR/λS2,
ΔVR2=λS2σD2N, ΔT2=2T2N.
ni¯NTΔfscan/K2πσDexp-f-fS2/2σD2, NTi=1Kni¯.
σˆD2=i=1Kni+Δbifi-fˆS2i=1Kni+Δbi, fˆS=i=1Kni+Δbifii=1Kni+Δbi, NˆT=i=1Kni+Δbi.
ΔT=σD2-σˆD2/γ=ΔσˆD2/γ
NS=K NTΔfscan/K2πσD=NTΔfscan2πσD=αscanNT2π, NB=i=1Kbi¯=kb¯.
ΔTrms|freq-scanTNS2π αscan+2π αscan2×1-αscan26+αscan480NBNS1/2.
ΔTrms|freq-scan/nightTSNRS2π αscan1/2.
ΔTrms|freq-scan/dayTSNRS2π αscan2×1-αscan26+αscan4801/2,
SNRS=NS2NS+NB,
3.591TSNRS718 KSNRS
5.435TSNRS1090 KSNRS
1.796TSNRS359 KSNRS
2.264TSNRS453 KSNRS
16.02TSNRS3200 KSNRS
2.188TSNRS438 KSNRS
2TSNRS283 KSNRS
9.856TSNR3721990 KSNR372
1.854TSNR372371 KSNR372
TSNRR200 KSNRR
718 KSNRFe
438 m/sSNRFe
1090 KSNRFe
1021 m/sSNRFe
359 KSNRFe
310 m/sSNRFe
453 KSNRFe
253 m/sSNRFe
934 KSNRFe
357 m/sSNRFe
719 KSNRFe
425 m/sSNRFe
467 KSNRFe
253 m/sSNRFe
776 KSNRFe
280 m/sSNRFe
283 KSNRFe
173 m/sSNRFe

Metrics