Abstract

A 1500-nm-band laser signal is upconverted to the mid-visible part of the spectrum by quasi-phase matched, sum-frequency generation with an 800-nm-band laser pump in a periodically poled KTiOPO4. For an appropriate combination of the two fundamental wavelengths, an acceptance bandwidth of 40–60 nm cm for the pump wavelength is attainable simultaneously with a temperature acceptance bandwidth of 60–70 °C cm in an angularly noncritical condition. Using a distributed feedback laser at 1590 nm and a Fabry-Perot laser at 807 nm, we demonstrate a temperature tolerance as large as 60 °C with a 10-mm-long crystal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
    [CrossRef]
  2. X. Cao, B. Rose, R. V. Ramaswamy, R. Srivastava, “Efficient direct diode-laser frequency doubling in quasi-phase-matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992).
    [CrossRef] [PubMed]
  3. V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
    [CrossRef]
  4. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
    [CrossRef]
  5. P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
    [CrossRef]
  6. J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
    [CrossRef]
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.
  8. J. Yao, W. Sheng, W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
    [CrossRef]
  9. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
    [CrossRef]
  10. K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
    [CrossRef]
  11. D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
    [CrossRef]
  12. Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
    [CrossRef]
  13. W. Wiechmann, S. Kubota, T. Fukui, H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [CrossRef] [PubMed]
  14. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  15. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [CrossRef] [PubMed]
  16. M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [CrossRef]
  17. J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
    [CrossRef]

2002 (2)

2000 (2)

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[CrossRef]

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[CrossRef]

1998 (1)

1993 (1)

1992 (3)

1991 (1)

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

1989 (1)

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

1987 (2)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1976 (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Arai, S.

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Bierlein, J. D.

H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[CrossRef] [PubMed]

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

Bjorklund, G. C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Brixner, L. H.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

Byer, R. L.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Cao, X.

Champert, P. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

Chen, Y. F.

Choy, M. M.

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[CrossRef]

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Ferretti, A.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

Fukui, T.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[CrossRef]

Hsu, W. Y.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

Huang, Y. C.

Karlsson, H.

Kato, K.

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

Kubota, S.

Laurell, F.

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Lenth, W.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Lim, E. J.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Lin, T. C.

Masuda, H.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[CrossRef]

Pasiskevicius, V.

Popov, S. V.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

Ramaswamy, R. V.

Risk, W. P.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Rose, B.

Schellenberg, F. M.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Sheng, W.

Shi, W.

Solodyankin, M. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

Srivastava, R.

Suematsu, Y.

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[CrossRef]

Taylor, J. R.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

Tellefsen, J. A.

Tsai, S. W.

Vanherzeele, H.

Wang, S.

Wang, S. C.

Welch, D. F.

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[CrossRef]

Wiechmann, W.

Wong, B. C.

Yao, J.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[CrossRef]

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. B (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Other (2)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Combination of the two fundamental wavelengths (λ1, λ2) under angularly noncritical QPM conditions with ∂Δk/∂λ2 = 0. The QPM period Λ and the generated sum-frequency wavelength λ3 are plotted on the curve.

Fig. 2
Fig. 2

Calculated conversion efficiency dependence on the deviation from the phase-matching conditions of (a) signal wavelength λ1, (b) pump wavelength λ2, (c) crystal temperature T.

Fig. 3
Fig. 3

Calculation of acceptance bandwidths for the fundamental wavelengths. Each signal wavelength λ1 has a specific pair of pump wavelength λ2 according to Fig. 1.

Fig. 4
Fig. 4

Calculation of temperature acceptance bandwidth as a function of the fundamental wavelength. Each signal wavelength λ1 has a specific pair of pump wavelength λ2 according to Fig. 1.

Fig. 5
Fig. 5

Experimental setup used to investigate the sum-frequency mixing of diode lasers in QPM nonlinear crystal: λ/2, half-wave plate; M, dichroic mirror; F, IR-cut filter; L1, L2, convex lenses.

Fig. 6
Fig. 6

Spectra of (a) the signal and (b) pump diode lasers used for type II sum-frequency mixing in PPKTP. (c) Corresponding spectrum of the sum-frequency radiation.

Fig. 7
Fig. 7

Spectra of (a) the signal and (b) pump diode lasers used for type I sum-frequency mixing in PPLN. (c) Corresponding spectrum of the sum-frequency radiation.

Fig. 8
Fig. 8

Measured green sum-frequency power dependence on the temperature of the PPKTP and PPLN crystals.

Fig. 9
Fig. 9

Relative sum-frequency power as a function of the DFB laser wavelength for PPKTP and PPLN crystals.

Tables (1)

Tables Icon

Table 1 Optical Parameters and Calculated Phase-Matching Acceptance Bandwidths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ=2lc=2π|k3-k1-k2|,
Δk=k3-k1-k2+2π/Λfor k3<k1+k2k3-k1-k2-2π/Λfor k3>k1+k2.
η  sinc2ΔkL2,
Δk=Δk|ξ0+Δkξξ0Δξ+122Δkξ2ξ0Δξ2+.
ΔξFL=4χHΔkξξ0,
ΔξFL1/2=4χH2Δkξ2ξ01/2.

Metrics