Abstract

A 1500-nm-band laser signal is upconverted to the mid-visible part of the spectrum by quasi-phase matched, sum-frequency generation with an 800-nm-band laser pump in a periodically poled KTiOPO4. For an appropriate combination of the two fundamental wavelengths, an acceptance bandwidth of 40–60 nm cm for the pump wavelength is attainable simultaneously with a temperature acceptance bandwidth of 60–70 °C cm in an angularly noncritical condition. Using a distributed feedback laser at 1590 nm and a Fabry-Perot laser at 807 nm, we demonstrate a temperature tolerance as large as 60 °C with a 10-mm-long crystal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
    [Crossref]
  2. X. Cao, B. Rose, R. V. Ramaswamy, R. Srivastava, “Efficient direct diode-laser frequency doubling in quasi-phase-matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992).
    [Crossref] [PubMed]
  3. V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
    [Crossref]
  4. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
    [Crossref]
  5. P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
    [Crossref]
  6. J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
    [Crossref]
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.
  8. J. Yao, W. Sheng, W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
    [Crossref]
  9. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
    [Crossref]
  10. K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
    [Crossref]
  11. D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
    [Crossref]
  12. Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
    [Crossref]
  13. W. Wiechmann, S. Kubota, T. Fukui, H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [Crossref] [PubMed]
  14. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [Crossref]
  15. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [Crossref] [PubMed]
  16. M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [Crossref]
  17. J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
    [Crossref]

2002 (2)

2000 (2)

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[Crossref]

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[Crossref]

1998 (1)

1993 (1)

1992 (3)

1991 (1)

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

1989 (1)

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

1987 (2)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

1976 (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Arai, S.

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[Crossref]

Baumert, J.-C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

Bierlein, J. D.

H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[Crossref] [PubMed]

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Bjorklund, G. C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

Brixner, L. H.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Byer, R. L.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Cao, X.

Champert, P. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[Crossref]

Chen, Y. F.

Choy, M. M.

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[Crossref]

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Fejer, M. M.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

Ferretti, A.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Fukui, T.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[Crossref]

Hsu, W. Y.

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Huang, Y. C.

Karlsson, H.

Kato, K.

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

Kubota, S.

Laurell, F.

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Lenth, W.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

Lim, E. J.

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

Lin, T. C.

Masuda, H.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[Crossref]

Pasiskevicius, V.

Popov, S. V.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[Crossref]

Ramaswamy, R. V.

Risk, W. P.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

Rose, B.

Schellenberg, F. M.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

Sheng, W.

Shi, W.

Solodyankin, M. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[Crossref]

Srivastava, R.

Suematsu, Y.

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[Crossref]

Taylor, J. R.

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[Crossref]

Tellefsen, J. A.

Tsai, S. W.

Vanherzeele, H.

Wang, S.

Wang, S. C.

Welch, D. F.

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[Crossref]

Wiechmann, W.

Wong, B. C.

Yao, J.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[Crossref]

J. D. Bierlein, A. Ferretti, L. H. Brixner, W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000).
[Crossref]

Y. Suematsu, S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1436–1449 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Phys. Rev. B (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Other (2)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997), Chap. 2.
[Crossref]

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Combination of the two fundamental wavelengths (λ1, λ2) under angularly noncritical QPM conditions with ∂Δk/∂λ2 = 0. The QPM period Λ and the generated sum-frequency wavelength λ3 are plotted on the curve.

Fig. 2
Fig. 2

Calculated conversion efficiency dependence on the deviation from the phase-matching conditions of (a) signal wavelength λ1, (b) pump wavelength λ2, (c) crystal temperature T.

Fig. 3
Fig. 3

Calculation of acceptance bandwidths for the fundamental wavelengths. Each signal wavelength λ1 has a specific pair of pump wavelength λ2 according to Fig. 1.

Fig. 4
Fig. 4

Calculation of temperature acceptance bandwidth as a function of the fundamental wavelength. Each signal wavelength λ1 has a specific pair of pump wavelength λ2 according to Fig. 1.

Fig. 5
Fig. 5

Experimental setup used to investigate the sum-frequency mixing of diode lasers in QPM nonlinear crystal: λ/2, half-wave plate; M, dichroic mirror; F, IR-cut filter; L1, L2, convex lenses.

Fig. 6
Fig. 6

Spectra of (a) the signal and (b) pump diode lasers used for type II sum-frequency mixing in PPKTP. (c) Corresponding spectrum of the sum-frequency radiation.

Fig. 7
Fig. 7

Spectra of (a) the signal and (b) pump diode lasers used for type I sum-frequency mixing in PPLN. (c) Corresponding spectrum of the sum-frequency radiation.

Fig. 8
Fig. 8

Measured green sum-frequency power dependence on the temperature of the PPKTP and PPLN crystals.

Fig. 9
Fig. 9

Relative sum-frequency power as a function of the DFB laser wavelength for PPKTP and PPLN crystals.

Tables (1)

Tables Icon

Table 1 Optical Parameters and Calculated Phase-Matching Acceptance Bandwidths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ=2lc=2π|k3-k1-k2|,
Δk=k3-k1-k2+2π/Λfor k3<k1+k2k3-k1-k2-2π/Λfor k3>k1+k2.
η  sinc2ΔkL2,
Δk=Δk|ξ0+Δkξξ0Δξ+122Δkξ2ξ0Δξ2+.
ΔξFL=4χHΔkξξ0,
ΔξFL1/2=4χH2Δkξ2ξ01/2.

Metrics