Abstract

We describe the design and implementation of a high-data-rate high-capacity digital holographic storage disk system. Various system design trade-offs that affect density and data-rate performance are described and analyzed. In the demonstration system that we describe, high-density holographic recording is achieved by use of high-resolution short-focal-length optics and correlation shift multiplexing in photopolymer disk media. Holographic channel decoding at a 1-Gbit/s data rate is performed by custom-built electronic hardware. A benchmark sustained optical data-transfer rate of 10 Gbits/s has been successfully demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  3. L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
    [CrossRef]
  4. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  5. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  6. A. M. Darskii, V. B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. (USSR) 65, 392–395 (1988).
  7. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  8. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  9. H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  10. A. VanderLugt, “Design relationships for holographic memories,” Appl. Opt. 12, 1675–1685 (1973).
    [CrossRef]
  11. A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
    [CrossRef]
  12. M.-P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
    [CrossRef]
  13. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  14. G. J. Steckman, A. Pu, D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394 (2001).
    [CrossRef]
  15. H.-Y. S. Li and, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef]
  16. S. S. Orlov, L. Hesselink, “Holographic shift multiplexing in thin volumetric media,” J. Opt. Soc. Am. B 20, 1912–1921 (2003).
    [CrossRef]
  17. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  18. S. S. Orlov, R. Snyder, M. C. Bashaw, “Optical relay for pixel-based holographic storage and retrieval,” U.S. patent6,108,110 (22August2000).
  19. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  20. G. W. Burr, J. Ashley, H. Coufal, R. Grygier, J. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
    [CrossRef] [PubMed]
  21. S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.
  22. W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.
  23. S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.
  24. S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.
  25. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. Hoffnagle, R. Macfarlane, R. M. Shelby, “Volume holographic data storage at an areal density of 250 gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
    [CrossRef]
  26. D. A. Waldman, C. Butler, D. Raguin, “Advances in Aprilis CROP photopolymer material for holographic data storage at greater than 100 bits/sq micron,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE5216, 10–25 (2003).
    [CrossRef]

2003 (1)

2001 (2)

1998 (2)

1997 (2)

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

G. W. Burr, J. Ashley, H. Coufal, R. Grygier, J. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (2)

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

1994 (3)

1992 (1)

1988 (1)

A. M. Darskii, V. B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. (USSR) 65, 392–395 (1988).

1973 (2)

L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
[CrossRef]

A. VanderLugt, “Design relationships for holographic memories,” Appl. Opt. 12, 1675–1685 (1973).
[CrossRef]

1970 (1)

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

1963 (1)

Ashley, J.

Barbastathis, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

S. S. Orlov, R. Snyder, M. C. Bashaw, “Optical relay for pixel-based holographic storage and retrieval,” U.S. patent6,108,110 (22August2000).

Bernal, M.-P.

Bjornson, E.

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

Bobrinev, V. L.

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

Boyd, C.

Burr, G. W.

Butler, C.

D. A. Waldman, C. Butler, D. Raguin, “Advances in Aprilis CROP photopolymer material for holographic data storage at greater than 100 bits/sq micron,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE5216, 10–25 (2003).
[CrossRef]

Campbell, S.

Chang, T. Y.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Christian, W.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
[CrossRef]

Curtis, K.

d’Auria, L.

L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
[CrossRef]

Darskii, A. M.

A. M. Darskii, V. B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. (USSR) 65, 392–395 (1988).

Dhar, L.

Grygier, R.

Harris, A.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

S. S. Orlov, L. Hesselink, “Holographic shift multiplexing in thin volumetric media,” J. Opt. Soc. Am. B 20, 1912–1921 (2003).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

Hill, A.

Hoffnagle, J.

Hong, J. H.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Huignard, J. P.

L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
[CrossRef]

Jefferson, C. M.

Jurich, M.

Lee, X.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

Levene, M.

Levinos, N.

Leyva, V.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Li and, H.-Y. S.

Macfarlane, R.

Marcus, B.

Markov, V. B.

A. M. Darskii, V. B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. (USSR) 65, 392–395 (1988).

McMichael, I.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Mikaelian, A. L.

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

Mok, F. H.

Naumova, S. M.

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

Okas, R.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

Orlov, S. S.

S. S. Orlov, L. Hesselink, “Holographic shift multiplexing in thin volumetric media,” J. Opt. Soc. Am. B 20, 1912–1921 (2003).
[CrossRef]

S. S. Orlov, R. Snyder, M. C. Bashaw, “Optical relay for pixel-based holographic storage and retrieval,” U.S. patent6,108,110 (22August2000).

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

Paek, E. G.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Phillips, W.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

Psaltis, D.

Pu, A.

Quintanilla, M.

Raguin, D.

D. A. Waldman, C. Butler, D. Raguin, “Advances in Aprilis CROP photopolymer material for holographic data storage at greater than 100 bits/sq micron,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE5216, 10–25 (2003).
[CrossRef]

Rakuljic, G. A.

Schilling, M.

Shelby, R. M.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
[CrossRef]

Snyder, R.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

S. S. Orlov, R. Snyder, M. C. Bashaw, “Optical relay for pixel-based holographic storage and retrieval,” U.S. patent6,108,110 (22August2000).

Sokolova, L. Z.

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

Spitz, E.

L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
[CrossRef]

Steckman, G. J.

Tackitt, M.

Takashima, Y.

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

Van Heerden, P.

VanderLugt, A.

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

D. A. Waldman, C. Butler, D. Raguin, “Advances in Aprilis CROP photopolymer material for holographic data storage at greater than 100 bits/sq micron,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE5216, 10–25 (2003).
[CrossRef]

Wilson, W.

Yariv, A.

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

A. L. Mikaelian, V. L. Bobrinev, S. M. Naumova, L. Z. Sokolova, “Design principles of holographic memory devices,” IEEE J. Quantum Electron. QE-6, 193–198 (1970).
[CrossRef]

IEEE Trans. Magn. (1)

L. d’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9, 83–94 (1973).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems—techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Opt. Lett. (7)

Opt. Spectrosc. (USSR) (1)

A. M. Darskii, V. B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. (USSR) 65, 392–395 (1988).

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (7)

H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
[CrossRef]

S. S. Orlov, R. Snyder, M. C. Bashaw, “Optical relay for pixel-based holographic storage and retrieval,” U.S. patent6,108,110 (22August2000).

D. A. Waldman, C. Butler, D. Raguin, “Advances in Aprilis CROP photopolymer material for holographic data storage at greater than 100 bits/sq micron,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE5216, 10–25 (2003).
[CrossRef]

S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Lee, L. Hesselink, R. Okas, R. Snyder, “High transfer rate (1 Gbit/sec) high capacity holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper CTuC4, pp. 190–191.

W. Phillips, S. S. Orlov, E. Bjornson, L. Hesselink, R. Okas, “Video demonstration of high data rate holographic disk data storage system,” presented at the 2000 Optical Society of America Annual Meeting, Providence, R.I., 22–25 October 2000.

S. S. Orlov, E. Bjornson, W. Phillips, L. Hesselink, R. Okas, “6 Gbit/sec transfer rate demonstration in holographic disk digital data storage system,” presented at the 16th Topical Meeting on Optical Data Storage, Chateau Whistler Resort, Canada, 14–17 May 2000.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas, “High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CMO2, pp. 70–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Schematic of the holographic optical disk.

Fig. 2
Fig. 2

Individual page storage density versus NA of imaging optics for several page sizes P (L = 500 μm; λ = 0.532 μm; ξ = 1.8; n = 1.5).

Fig. 3
Fig. 3

Individual page storage density versus page size P for media of three thicknesses (NA = 0.4, λ = 0.532 μm, ξ = 1.8, n = 1.5).

Fig. 4
Fig. 4

Achievable storage density of a holographic disk versus the raw data rate for several NA of the imaging optics in the limit of thin media (L → 0) or of a very large page size (P → ∞). P 0 = 200 mW, ηopt = 0.2, p = 0.5, e min = 40 × 10-15 J, M/# = 1.0, λ = 0.532 μm, ξ = 1.8, n = 1.5.

Fig. 5
Fig. 5

Storage density versus media scattering noise εscatter for four numerical apertures of the imaging optics (SScR = 30; M/# = 1.0; λ = 0.532 μm; ξ = 1.8; n = 1.5; thin medium (L → 0) or very large page size (P → ∞) limit).

Fig. 6
Fig. 6

Achievable density per peristrophic location in a holographic disk versus media thickness L for pages of several sizes P for spherical or angular multiplexing (NAref = 0.2, m = 3, u s = 0.4, NA = 0.4, λ = 0.532 μm, ξ = 1.8, n = 1.5). Note the reduction of density with increased thickness for small pages (e.g., 200 × 200 or less).

Fig. 7
Fig. 7

Architecture of the digital holographic disk system.

Fig. 8
Fig. 8

Photograph of the holographic disk system.

Fig. 9
Fig. 9

Optical layout of the recording head: λ/4, quarter-wave plate; REF, reference.

Fig. 10
Fig. 10

Beam-splitting and -shaping optics used to provide signal and reference arms for the optical head: PBS, polarizing beam splitter; λ/2, half-wave plate.

Fig. 11
Fig. 11

Readout of 100 holograms superimposed by speckle shift multiplexing (three consecutive scans; hologram separation, approximately 5 μm; M/# = ∼1.0). The exposure per hologram was 0.5 mJ/cm2 (no scheduling); thus the change in diffraction efficiency reflects the change in material sensitivity with cumulative exposure.

Fig. 12
Fig. 12

Signal and cross-talk build-up in random Gaussian speckle shift multiplexing. Manual scheduling was used to produce a uniform diffraction efficiency distribution among 30 multiplexed holograms. The medium’s thickness was 200 μm; NA = 0.2; NAref = 0.2; hologram separation, approximately 5 μm. Cross talk is independent of the spatial location and depends only on the number of previously written holograms. The cross talk was measured (at 1000× reduced optical power) at the prospective location of the next hologram before its recording (i.e., the number of superimposed holograms increases from left to right).

Fig. 13
Fig. 13

Comparison of the volume shrinkage on polymerization of vinyl (open circles) and cationic ring-opening (filled squares) monomers as a function of molecular weight. Courtesy of D. A. Waldman (Aprilis, Inc., Maynard, Massachusetts).

Fig. 14
Fig. 14

Aprilis photopolymer medium (ULSH-500) sensitivity versus cumulative optical exposure (after heat treatment at 65 °C, based on the shift-multiplexing experiment of Fig. 12).

Fig. 15
Fig. 15

Operation of HDSS holographic channel electronics: R.S., Reed-Solomon; SQRT (Pixel) denotes the square root operation on the raw pixel values (performed with the use of a lookup table).

Fig. 16
Fig. 16

Typical image SNR distribution.

Fig. 17
Fig. 17

Retrieved JPEG image (right) and a sample digital hologram (left; raw byte error rate was 0.3 × 10-3; η ∼ 0.5%).

Fig. 18
Fig. 18

Pulse energy and average power versus pulse rate of a frequency-doubled Nd:YAG laser.

Fig. 19
Fig. 19

Holograms reconstructed at top, 6 Gbits/s and at bottom, a nominal 1 Gbit/s; 10% of the area is masked.

Fig. 20
Fig. 20

Sample hologram reconstructed at 10 Gbits/s (byte error rate ∼1%, with 10% of the area masked). Channel blocks of 6:8 modulation code are shown at the right.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ds=2NAξλ21+ 4NA2LnξλP-22NAξλ2,
P4NA2Lnξλ.
η=M/#2N2,
N=M/#ηoptP0pEminR1/2,
Emin hνSNRermsQE,
D=DsNM/#ηoptP0pEminR1/22NAξλ21+ 4NA2LnξλP-2.
N=nM/#2NAεscatterSScR1/2,
D= 2NAnM/#λξ2εscatterSScR1/21+ 4NA2LnξλP-2.
N=2usNArefLλm,
D= 2usNArefLλm2NAξλ21+ 4NA2LnξλP-2.
ηδ=η0|2J1kNAδ/kNAδ|2,

Metrics