Abstract

Laterally displaceable microlens array telescopes allow for variable and fast beam deflection. The generation of spurious light usually leads to a reduction of transfer efficiency with increasing displacement. We present the introduction of an array of field lenses on the back side of a recollimating microlens array that results in a reduced deflection angle dependency of transfer efficiency. A paraxial matrix formalism is used to prove the theoretical elimination of spurious light by use of a field lens array. The fabrication of well-aligned double-sided lens arrays by UV replication is discussed. Measurements of transfer efficiency with and without the use of field lens arrays are compared with the results of numerical wave-optic simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Flood, W. J. Cassarly, “Wide angle beam steering using translation of plural lens arrays,” U.S. Patent5,059,008 (22October1991).
  2. G. Gal, H. E. Morrow, “Internally cooled large aperture microlens array with monolithic integrated micro scanner,” U.S. Patent5,415,727 (16May1995).
  3. G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).
  4. G. F. McDearmon, K. M. Flood, J. M. Finlan, “Comparison of conventional and microlens-array agile beam steerers,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 167–178 (1995).
    [CrossRef]
  5. S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
    [CrossRef]
  6. R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
    [CrossRef]
  7. R. Göring, S. Glöckner, “Potential of transmittive micro-optical systems for miniaturized scanners, modulators, and switches,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 70–81 (1997).
    [CrossRef]
  8. S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
    [CrossRef]
  9. S. Glöckner, R. Göring, T. Possner, “Micro-opto-mechanical beam deflectors,” Opt. Eng. 36, 1339–1345 (1997).
    [CrossRef]
  10. T. D. Milster, “Modelling and measurement of a micro-optic beam deflector,” in Design, Modeling, and Control of Laser Beam Optics, Y. Kohanzadeh, G. N. Lawrence, J. G. McCoy, H. Weichel, eds., Proc. SPIE1625, 78–83 (1992).
    [CrossRef]
  11. W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  12. M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
    [CrossRef]
  13. S. Glöckner, R. Göring, “Investigation of statistical variations between lenslets of microlens arrays,” Appl. Opt. 36, 4438–4445 (1997).
    [CrossRef] [PubMed]
  14. E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
    [CrossRef]
  15. S. Glöckner, R. Göring, “Analysis of a micro-optical light modulator,” Appl. Opt. 36, 1467–1471 (1997).
    [CrossRef] [PubMed]
  16. B. Götz, T. Martin, P. Bücker, “Piezoelectrical elements for micro-optical applications,” in Miniaturized Systems with Micro-Optics and Micromechanics III, M. E. Motamedi, R. Göring, eds., Proc. SPIE3276, 230–243 (1998).
    [CrossRef]
  17. J. W. Duparré, R. Göring, “Numerical wave optical analysis of microlens array telescopes and comparison with experimental results,” Appl. Opt. 42, 3992–4001 (2003).
    [CrossRef] [PubMed]
  18. J. Duparré, B. Götz, R. Göring, “Micro-optical 1 × 4 fiber switch for multimode fibers with 600-μm core diameters,” Appl. Opt. 42, 6889–6896 (2003).
    [CrossRef] [PubMed]
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  20. W. Shaomin, L. Ronchi, “Principles and design of optical arrays,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 25, pp. 279–347.
    [CrossRef]
  21. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).
  22. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  23. P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
    [CrossRef]
  24. H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
    [CrossRef]

2003 (2)

2002 (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).

1999 (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

1998 (1)

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

1997 (3)

1994 (1)

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

1993 (1)

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

1992 (1)

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

1990 (1)

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

1988 (1)

Anderson, W. W.

G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).

Andrews, A. P.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Bierbaum, R.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Bräuer, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Bücker, P.

B. Götz, T. Martin, P. Bücker, “Piezoelectrical elements for micro-optical applications,” in Miniaturized Systems with Micro-Optics and Micromechanics III, M. E. Motamedi, R. Göring, eds., Proc. SPIE3276, 230–243 (1998).
[CrossRef]

Cassarly, W. J.

K. M. Flood, W. J. Cassarly, “Wide angle beam steering using translation of plural lens arrays,” U.S. Patent5,059,008 (22October1991).

Connell, G. A. N.

Dannberg, P.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Döring, D.

R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
[CrossRef]

Duparré, J.

Duparré, J. W.

Erdmann, L.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Finlan, J. M.

G. F. McDearmon, K. M. Flood, J. M. Finlan, “Comparison of conventional and microlens-array agile beam steerers,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 167–178 (1995).
[CrossRef]

Flood, K. M.

G. F. McDearmon, K. M. Flood, J. M. Finlan, “Comparison of conventional and microlens-array agile beam steerers,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 167–178 (1995).
[CrossRef]

K. M. Flood, W. J. Cassarly, “Wide angle beam steering using translation of plural lens arrays,” U.S. Patent5,059,008 (22October1991).

Frank, M.

S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
[CrossRef]

Gal, G.

G. Gal, H. E. Morrow, “Internally cooled large aperture microlens array with monolithic integrated micro scanner,” U.S. Patent5,415,727 (16May1995).

G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).

Glaubitt, W.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Glöckner, S.

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

S. Glöckner, R. Göring, T. Possner, “Micro-opto-mechanical beam deflectors,” Opt. Eng. 36, 1339–1345 (1997).
[CrossRef]

S. Glöckner, R. Göring, “Investigation of statistical variations between lenslets of microlens arrays,” Appl. Opt. 36, 4438–4445 (1997).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, “Analysis of a micro-optical light modulator,” Appl. Opt. 36, 1467–1471 (1997).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
[CrossRef]

R. Göring, S. Glöckner, “Potential of transmittive micro-optical systems for miniaturized scanners, modulators, and switches,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 70–81 (1997).
[CrossRef]

Goltsos, W.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Göring, R.

J. Duparré, B. Götz, R. Göring, “Micro-optical 1 × 4 fiber switch for multimode fibers with 600-μm core diameters,” Appl. Opt. 42, 6889–6896 (2003).
[CrossRef] [PubMed]

J. W. Duparré, R. Göring, “Numerical wave optical analysis of microlens array telescopes and comparison with experimental results,” Appl. Opt. 42, 3992–4001 (2003).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

S. Glöckner, R. Göring, “Analysis of a micro-optical light modulator,” Appl. Opt. 36, 1467–1471 (1997).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, “Investigation of statistical variations between lenslets of microlens arrays,” Appl. Opt. 36, 4438–4445 (1997).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, T. Possner, “Micro-opto-mechanical beam deflectors,” Opt. Eng. 36, 1339–1345 (1997).
[CrossRef]

S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
[CrossRef]

R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
[CrossRef]

R. Göring, S. Glöckner, “Potential of transmittive micro-optical systems for miniaturized scanners, modulators, and switches,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 70–81 (1997).
[CrossRef]

Götz, B.

J. Duparré, B. Götz, R. Göring, “Micro-optical 1 × 4 fiber switch for multimode fibers with 600-μm core diameters,” Appl. Opt. 42, 6889–6896 (2003).
[CrossRef] [PubMed]

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

B. Götz, T. Martin, P. Bücker, “Piezoelectrical elements for micro-optical applications,” in Miniaturized Systems with Micro-Optics and Micromechanics III, M. E. Motamedi, R. Göring, eds., Proc. SPIE3276, 230–243 (1998).
[CrossRef]

R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
[CrossRef]

Gunning, W. J.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Herman, B. J.

G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).

Holz, M.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Khoshnevisan, M.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Kley, E. B.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Krehl, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).

Martin, T.

R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
[CrossRef]

B. Götz, T. Martin, P. Bücker, “Piezoelectrical elements for micro-optical applications,” in Miniaturized Systems with Micro-Optics and Micromechanics III, M. E. Motamedi, R. Göring, eds., Proc. SPIE3276, 230–243 (1998).
[CrossRef]

McDearmon, G. F.

G. F. McDearmon, K. M. Flood, J. M. Finlan, “Comparison of conventional and microlens-array agile beam steerers,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 167–178 (1995).
[CrossRef]

Milster, T. D.

T. D. Milster, “Modelling and measurement of a micro-optic beam deflector,” in Design, Modeling, and Control of Laser Beam Optics, Y. Kohanzadeh, G. N. Lawrence, J. G. McCoy, H. Weichel, eds., Proc. SPIE1625, 78–83 (1992).
[CrossRef]

Morrow, H. E.

G. Gal, H. E. Morrow, “Internally cooled large aperture microlens array with monolithic integrated micro scanner,” U.S. Patent5,415,727 (16May1995).

Motamedi, M. E.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Popovic, Z. D.

Possner, T.

S. Glöckner, R. Göring, T. Possner, “Micro-opto-mechanical beam deflectors,” Opt. Eng. 36, 1339–1345 (1997).
[CrossRef]

S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
[CrossRef]

Ronchi, L.

W. Shaomin, L. Ronchi, “Principles and design of optical arrays,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 25, pp. 279–347.
[CrossRef]

Rose, A.

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

Rose, K.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Shaomin, W.

W. Shaomin, L. Ronchi, “Principles and design of optical arrays,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 25, pp. 279–347.
[CrossRef]

Shough, D. M.

G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Sprague, R. A.

Watson, E. A.

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

Wolter, H.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Appl. Opt. (5)

J. Opt. A: Pure Appl. Opt. (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).

Mater. Res. Soc. Symp. Proc. (1)

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth)acrylate alkoxysilanes—a new type of reactive compound,” Mater. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Microsyst. Technol. (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[CrossRef]

Opt. Eng. (5)

S. Glöckner, R. Göring, B. Götz, A. Rose, “Piezoelectrically driven micro-optic fiber switches,” Opt. Eng. 37, 1229–1234 (1998).
[CrossRef]

S. Glöckner, R. Göring, T. Possner, “Micro-opto-mechanical beam deflectors,” Opt. Eng. 36, 1339–1345 (1997).
[CrossRef]

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

Other (11)

B. Götz, T. Martin, P. Bücker, “Piezoelectrical elements for micro-optical applications,” in Miniaturized Systems with Micro-Optics and Micromechanics III, M. E. Motamedi, R. Göring, eds., Proc. SPIE3276, 230–243 (1998).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

W. Shaomin, L. Ronchi, “Principles and design of optical arrays,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 25, pp. 279–347.
[CrossRef]

K. M. Flood, W. J. Cassarly, “Wide angle beam steering using translation of plural lens arrays,” U.S. Patent5,059,008 (22October1991).

G. Gal, H. E. Morrow, “Internally cooled large aperture microlens array with monolithic integrated micro scanner,” U.S. Patent5,415,727 (16May1995).

G. Gal, W. W. Anderson, B. J. Herman, D. M. Shough, “Wavefront correctors for scanning microlens arrays,” U.S. Patent5,444,572 (22August1995).

G. F. McDearmon, K. M. Flood, J. M. Finlan, “Comparison of conventional and microlens-array agile beam steerers,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 167–178 (1995).
[CrossRef]

S. Glöckner, R. Göring, T. Possner, M. Frank, “Micro optical Modulators and Switches for Multimode Fiber Applications,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 211–219 (1997).
[CrossRef]

R. Göring, T. Martin, B. Götz, D. Döring, “Miniaturized piezoelectrically driven fiber optic switches with transmittive micro-optics,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Göring, eds., Proc. SPIE3878, 136–143 (1999).
[CrossRef]

R. Göring, S. Glöckner, “Potential of transmittive micro-optical systems for miniaturized scanners, modulators, and switches,” in Miniaturized Systems with Micro-Optics and Micromechanics II, M. E. Motamedi, L. J. Hornbeck, K. S. J. Pister, eds., Proc. SPIE3008, 70–81 (1997).
[CrossRef]

T. D. Milster, “Modelling and measurement of a micro-optic beam deflector,” in Design, Modeling, and Control of Laser Beam Optics, Y. Kohanzadeh, G. N. Lawrence, J. G. McCoy, H. Weichel, eds., Proc. SPIE1625, 78–83 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of a micro-optic scanner with a field lens array that can be used as a multimode fiber switch.

Fig. 2
Fig. 2

Possible setups of microlens array telescopes: (a) simple Keplerian, (b) Galilean, (c) reversed Keplerian, (d) reversed Keplerian with field lens arrays.

Fig. 3
Fig. 3

Deflection performance of different arrangements and possibilities of enhancement: (a) reversed Keplerian with equal focal lengths, (b) Galilean with nearly equal focal lengths, (c) reversed Keplerian with an adapted ratio of focal lengths, (d) Galilean with an adapted ratio of focal lengths, (e) reversed Keplerian with a field lens array (all three lenses are of equal focal length).

Fig. 4
Fig. 4

Principle of beam deflection in MLA telescopes. (a) Lateral displacement of recollimating MLA results in beam deflection. Generation of spurious light that is due to the overlap of diverging bundles with the neighboring recollimating microlens. (b) A field lens array in the intermediate image plane that is displaced by the recollimating MLA and reduces spurious light because recollimating lenses of the MLA are not overfilled.

Fig. 5
Fig. 5

Scan across the UV molded lens array showing 0.2-μm nonuniformity. The photoresist model and its replica show the same high fill factor and precision.

Fig. 6
Fig. 6

Difference between the measured lens profile and the best-fit circle, showing a peak-to-valley deviation as low as 100 nm. The observable high-frequency oscillation in the curve is the result of vibrations of the mechanical profiling instrument. The surface roughness of replicated reflow microlenses was determined to be below 1 nm (rms) with an atomic force microscope.

Fig. 7
Fig. 7

UV molding of double-sided lens arrays. The step is sketched, where the second array (on top of the glass substrate) is fabricated and aligned with respect to the array that is already present on the back side. Note that the wedge error compensation (WEC) and control of the axial distance is done with respect to the mold and chuck directly (indicated by the arrows) and not with respect to the glass substrate.

Fig. 8
Fig. 8

Experimental setup for determination of the transfer efficiencies of the MLA telescope with a field lens array as a function of lateral decentering (here coupling into a pinhole in front of a photodetector). The following elements are shown: A, input fiber; B, collimating achromat; C, focusing MLA; D, field lens array and recollimating lens array on two sides of one substrate; E, focusing achromat; F, pinhole and attached photodiode; G, piezomechanical translation stage.

Fig. 9
Fig. 9

Measured transfer efficiencies of a reversed Keplerian arrangement (system parameters; see Table 1 and Section 3). The graph of the difference results from an interpolation of the curves with and without field lenses.

Fig. 10
Fig. 10

Numerically wave-optic simulated transfer efficiencies of a reversed Keplerian arrangement.

Tables (3)

Tables Icon

Table 1 Parameters of Fabricated Double-Sided Cylindrical MLAs

Tables Icon

Table 2 Measured Values of Insertion Loss and Cross Talk for a Reversed Keplerian Setup Corrected for Reflection Lossesa

Tables Icon

Table 3 Measured Values of Insertion Loss and Cross Talk for a Reversed Keplerian Setup with a Field Lens Array Corrected for Reflection Lossesa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

houtαout1=M11M12ΔxM21M22Δϕ001hinαin1.
100-1/f1r0/f001=10r0010001100-1/f10001×10-r0010001,
-12f-r00-1r0/f001=100-1/f1000110-r0010001×12f0010001100-1/f10001.
-r0r0/f1=-12f-r00-1r0/f001001.
-1f00-1r0/f001=100-1/f100011f0010001×100-1/f10001×10-r00100011f0010001×100-1/f10001.
0r0/f1=-1f00-1r0/f001001.

Metrics