Abstract

We present a precision laser ranger system for the measurement of large manufactured components and structures. The system was developed based on a beat-wave interferometry principle. The light source of this system is a frequency-stabilized laser with a frequency stability of 1 × 10-7 (in open air) or 10-8 (in the laboratory). The laser operates in two longitudinal modes, and the two modes are generated in common resonator; therefore the two beams are naturally coaxial. The precision ranger system does not need a long guide or any heavy machinery. In this system an adaptive filter and a wavelet-transform program are used to improve the measurement accuracy. The system described here has a measuring range of 0–20 m and a measuring uncertainty of 30 μm/10 m.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
    [CrossRef]
  2. T. Suzuki, H. Suda, O. Sasaki, “Double sinusoidal phase-modulating distributed-Bragg-reflector laser diode interferometer for distance measurement,” Appl. Opt. 42, 60–66 (2003).
    [CrossRef] [PubMed]
  3. Y. H. Peng, Wavelet Transformation and Its Application in Engineering (Science Publisher of China, Beijing, China, 1999), Sec. 9, pp. 115–133.
  4. Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).
  5. Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).
  6. Z. F. Zhou, T. Zhang, W. D. Zhou, “Laser profiling system for on-line measurement of superfine surfaces,” Appl. Opt. 41, 125–129 (2002).
    [CrossRef] [PubMed]
  7. P. Sandoz, V. Bonnans, T. Gharbi, “High-accuracy position and orientation measurement of extended two-dimensional surfaces by a phase-sensitive vision method,” Appl. Opt. 41, 5503–5511 (2002).
    [CrossRef] [PubMed]
  8. M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
    [CrossRef]
  9. B. Li and, J. W. Liang, “Measurement of large internal diameters based on dual-wavelength heterodyne interferometer,” Precis. Eng. 21, 36–42 (1997).
    [CrossRef]

2003 (3)

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

T. Suzuki, H. Suda, O. Sasaki, “Double sinusoidal phase-modulating distributed-Bragg-reflector laser diode interferometer for distance measurement,” Appl. Opt. 42, 60–66 (2003).
[CrossRef] [PubMed]

2002 (2)

1997 (1)

B. Li and, J. W. Liang, “Measurement of large internal diameters based on dual-wavelength heterodyne interferometer,” Precis. Eng. 21, 36–42 (1997).
[CrossRef]

1996 (1)

Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).

1988 (1)

Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).

Bonnans, V.

Briot, M.

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

Chen, Q.

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

Ganibal, C.

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

Gharbi, T.

Huang, Z. P.

Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).

Huo, Y.

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

Lescure, M.

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

Li and, B.

B. Li and, J. W. Liang, “Measurement of large internal diameters based on dual-wavelength heterodyne interferometer,” Precis. Eng. 21, 36–42 (1997).
[CrossRef]

Liang, J. W.

B. Li and, J. W. Liang, “Measurement of large internal diameters based on dual-wavelength heterodyne interferometer,” Precis. Eng. 21, 36–42 (1997).
[CrossRef]

Peng, Y. H.

Y. H. Peng, Wavelet Transformation and Its Application in Engineering (Science Publisher of China, Beijing, China, 1999), Sec. 9, pp. 115–133.

Prajoux, R.

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

Sandoz, P.

Sasaki, O.

Suda, H.

Suzuki, T.

Wu, B.

Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).

Yang, C.

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

Yuan, J. Q.

Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).

Zhang, T.

Z. F. Zhou, T. Zhang, W. D. Zhou, “Laser profiling system for on-line measurement of superfine surfaces,” Appl. Opt. 41, 125–129 (2002).
[CrossRef] [PubMed]

Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).

Zhao, D.

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

Zhou, W. D.

Zhou, Z. F.

Z. F. Zhou, T. Zhang, W. D. Zhou, “Laser profiling system for on-line measurement of superfine surfaces,” Appl. Opt. 41, 125–129 (2002).
[CrossRef] [PubMed]

Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).

Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).

Appl. Opt. (3)

Chin. J. Sci. Instrum. (1)

Z. F. Zhou, J. Q. Yuan, Z. P. Huang, “A thermo-regulation frequency stabilization system for twin longitudinal modes He–Ne laser,” Chin. J. Sci. Instrum. 9, 376–380 (1988).

Opt. Eng. (2)

Q. Chen, D. Zhao, C. Yang, Y. Huo, “Self-triggering pulsed time-of-flight laser range-finding method,” Opt. Eng. 42, 3608–3611 (2003).
[CrossRef]

M. Lescure, C. Ganibal, R. Prajoux, M. Briot, “Compact robotics perception system based on a laser range finder coupled with silicon micromirrors,” Opt. Eng. 42, 2653–2658 (2003).
[CrossRef]

Optoelectron. Eng. (1)

Z. F. Zhou, B. Wu, T. Zhang, “The measurement for large size object with double longitudinal modes laser,” Optoelectron. Eng. 23, 51–55 (1996).

Precis. Eng. (1)

B. Li and, J. W. Liang, “Measurement of large internal diameters based on dual-wavelength heterodyne interferometer,” Precis. Eng. 21, 36–42 (1997).
[CrossRef]

Other (1)

Y. H. Peng, Wavelet Transformation and Its Application in Engineering (Science Publisher of China, Beijing, China, 1999), Sec. 9, pp. 115–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the stabilizing system with thermal regulation.

Fig. 2
Fig. 2

Frequency-stabilized experiment in a windblown environment.

Fig. 3
Fig. 3

General layout of the precision ranger system.

Fig. 4
Fig. 4

Effect of the adaptive filter: top, processed waveform of the beat wave; bottom, unprocessed waveform of the beat wave.

Fig. 5
Fig. 5

Top, beat waveform processed by the wavelet sharpener; bottom, beat waveform before input to the wavelet sharpener.

Fig. 6
Fig. 6

Testing results for the full measuring range.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔQ=αAτΔT=2πrlατΔT,
ΔT=ΔQ/mFC=2πrlατΔT/mFC,
τ=Δt/ΔTmFC/2πrlα.
θt=12πσexp-t22σ2.
ψ1t=dθtdt, ψ2t=d2θtdt.
gat=1a gta, a>0,
Wa1ft=f * ψa1t=1a- fτψ1t-τadτ=f * a dθadtt=a1ddtf * θat.
Wa2ft=f * ψa2t=1a- fτψ2t-τadτ=f * a2d2θadt2t=a2d2dt2f * θat

Metrics