Abstract

An interferometric optical isolator that employs a nonreciprocal phase shift was studied. The optical isolator consisted of an interferometer with distinct layer structures. A traveling light wave underwent distinct nonreciprocal phase shifts such that the optical isolator could be operated in a unidirectional magnetic field. The optical isolator, in which the waveguide had a HfO2 cladding layer in one of the arms, was designed at a wavelength of 1.55 μm. The propagation distance of the nonreciprocal phase shifter required for the isolator’s operation was less than 1.5 mm. The device’s total length was less than 2 mm. An optical isolator with distinct layer structures was fabricated and evaluated. An isolation ratio of approximately 9.9 dB was obtained in the unidirectional magnetic field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
    [CrossRef]
  2. T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
    [CrossRef]
  3. J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
    [CrossRef]
  4. H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
    [CrossRef]
  5. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
    [CrossRef]
  6. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F.-J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998).
    [CrossRef]
  7. M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
    [CrossRef]
  8. T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
    [CrossRef]
  9. M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
    [CrossRef]
  10. M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
    [CrossRef]
  11. Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
    [CrossRef]
  12. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
    [CrossRef]
  13. H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
    [CrossRef]
  14. T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
    [CrossRef]
  15. S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
    [CrossRef]
  16. J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, 78–80 (1986).
    [CrossRef]
  17. M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
    [CrossRef]
  18. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
    [CrossRef]
  19. H. Yokoi, T. Mizumoto, Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42, 6605–6612 (2003).
    [CrossRef] [PubMed]
  20. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
    [CrossRef]

2003 (1)

2002 (1)

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

2000 (1)

1999 (6)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

1998 (1)

1994 (2)

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

1993 (2)

T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

1990 (1)

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

1988 (1)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

1986 (2)

J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, 78–80 (1986).
[CrossRef]

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

1982 (1)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

1975 (1)

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Abe, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Ahmad, R. U.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Alvisi, M.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Auracher, F.

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Bahlmann, N.

Baik, K. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

Chandrasekhara, V.

Chu, S. T.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Croitoru, N.

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

Dötsch, H.

Endo, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Erdmann, A.

Fujita, J.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Fukuda, K.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Furukawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Futakuchi, N.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

Gerhardt, R.

Gilo, M.

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

Gomi, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Gutierrez, C.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Hertel, P.

Ida, T.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Jeong, B. S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Kaida, N.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

Kobayashi, M.

T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
[CrossRef]

Kokubun, Y.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Kozakai, K.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

Lasky, J. B.

J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, 78–80 (1986).
[CrossRef]

Lee, K. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Lehmann, R.

Levy, M.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Martelli, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Mashimo, S.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Mizumoto, T.

H. Yokoi, T. Mizumoto, Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42, 6605–6612 (2003).
[CrossRef] [PubMed]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

Naito, Y.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

Nakano, Y.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

Norasetthekul, S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Norton, D. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Osgood, R. M.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Pan, W.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Park, P. Y.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Pearton, S. J.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Randles, M.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Rizzo, A.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Salz, D.

Sato, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Satoh, S.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Scaglione, S.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Schröteler, F.-J.

Shimbo, M.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Shin, J. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Shinjo, N.

Shintaku, T.

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
[CrossRef]

Shishodia, V.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

Shoji, Y.

Suzuki, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Takano, T.

Tanzawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

Uno, T.

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
[CrossRef]

Vasanelli, L.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Villareal, R.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Wallenhorst, M.

Witte, H. H.

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Yokoi, H.

H. Yokoi, T. Mizumoto, Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42, 6605–6612 (2003).
[CrossRef] [PubMed]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, 78–80 (1986).
[CrossRef]

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, M. Randles, C. Gutierrez, R. Villareal, “Observation of optical isolation based on nonreciprocal phase shift in a Mach-Zehnder interferometer,” Appl. Phys. Lett. 75, 998–1000 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Surf. Sci. 187, 75–81 (2002).
[CrossRef]

IEE Proc. Optoelectron. (1)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

IEEE Trans. Magn. (1)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

J. Appl. Phys. (3)

M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[CrossRef]

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (2)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by rf sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

Opt. Commun. (1)

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Thin Solid Films (2)

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, “Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance,” Thin Solid Films 354, 19–23 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of an optical isolator employing a nonreciprocal phase shift (p.s.). The external magnetic field is applied in the antiparallel direction.

Fig. 2
Fig. 2

Basic geometry of a three-layer slab waveguide.

Fig. 3
Fig. 3

Schematic diagram of an interferometric optical isolator with distinct layer structures that employs a nonreciprocal phase shift.

Fig. 4
Fig. 4

Calculated nonreciprocal phase shift versus the refractive index of the upper cladding layer.

Fig. 5
Fig. 5

Required propagation distance of the optical interferometer versus the refractive index of the upper cladding layer of one of the arms.

Fig. 6
Fig. 6

Refractive index of HfO2 measured by a spectroscopic ellipsometer.

Fig. 7
Fig. 7

Required propagation distance of an optical interferometer versus the Ce:YIG thickness. The upper cladding layer of arm 1 is HfO2.

Fig. 8
Fig. 8

Effective refractive index of an air-HfO2-Ce:YIG-NOG waveguide versus the thickness of the HfO2 layer.

Fig. 9
Fig. 9

Schematic diagram of a three-guide tapered coupler.

Fig. 10
Fig. 10

Calculated coupling characteristics of a three-guide tapered coupler versus the propagation distance.

Fig. 11
Fig. 11

Fabrication of an interferometric optical isolator with distinct layer structures.

Fig. 12
Fig. 12

(a) Near-field pattern observed at the output facet when a unidirectional magnetic field is applied. (b) Near-field pattern observed at the output facet when the magnetic field is reversed.

Fig. 13
Fig. 13

Schematic diagram of an interferometric optical isolator with asymmetric layer structures. One of the arms has a photosensitive material as an upper cladding layer.

Fig. 14
Fig. 14

Required propagation distance of optical interferometer depending on Ce:YIG thickness. The upper cladding layers of the two arms are HfO2 and polysilane, respectively.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ε˜i=εx000εyjα0-jαεzi i=1, 2, 3.
α=2nΘfk0,
×E=-jωμ0H,
×H=jωεε˜iE
x=0.
E=0, Ey, Ezexpjωt-βz,
H=Hx, 0, 0expjωt-βz.
2Hxy2+k02εyεz-α2εy-εzεy β2Hx=0.
Ez=jεyωε0εyεz-α2Hxy-αεy βHx.
ε˜i=ε000ε000εi i=1, 3.
tankyd=kyε¯y2η3ε3+η1ε1kyε¯y22-η1ε1η3ε3+η3ε3-η1ε1αεy2βε¯y2+αεy2βε¯y22,
β2=η12+ε1k02=ε¯z2k02-εy2εz2 ky2=η32+ε3k02,
ε¯y2=εy2εz2-α2εy2,
ε¯z2=εy2εz2-α2εz2.
tankyd=kyη1+η3ky2-η1η3,
β2=η12+ε1k02=εxk02-ky2=η32+ε3k02.
βf1-βf2L=2m1π rad,
βb1-βb2L=π+2m2π rad,
Δϕ=ΔβL=k0ΔnL=2.2π rad,

Metrics