Abstract

Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, ∼20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Poley, “Diesel engine lube analysis,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 33–41.
  2. A. J. Caines, R. F. Haycock, Automotive Lubricants Reference Book (Society of Automotive Engineers, Warrendale, Pa., 1996).
  3. D. J. Smolenski, S. E. Schwarz, “Automotive engine-oil condition monitoring,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 17–32.
  4. G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).
  5. X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).
  6. R. Gerhards, “Comparison of modern NMR-multipulse experiments in the characterization of products from coal and mineral oils,” Fresenius Z. Anal. Chem. 316, 231–238 (1983).
    [CrossRef]
  7. O. C. Mullins, S. Mitra-Kirtley, Y. Zhu, “The electronic absorption edge of petroleum,” Appl. Spectrosc. 46, 1405–1411 (1992).
    [CrossRef]
  8. N. Robinson, “Monitoring oil degradation with infrared spectroscopy,” Wearcheck Tech. Bull. 18 (1998), http://www.wearcheck.com .
  9. T. D. Downare, O. C. Mullins, “Visible and near-infrared fluorescence of crude oils,” Appl. Spectrosc. 49, 754–764 (1995).
    [CrossRef]
  10. B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
    [CrossRef]
  11. C. Y. Ralston, X. Wu, O. C. Mullins, “Quantum yield of crude oils,” Appl. Spectrosc. 50, 1563–1568 (1996).
    [CrossRef]
  12. P. Camagni, A. Colombo, C. Koehler, N. Omenetto, P. Qi, G. Rossi, “Fluorescence response of mineral oils: spectral yield versus absorption and decay time,” Appl. Opt. 30, 26–35 (1991).
    [CrossRef] [PubMed]
  13. M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
    [CrossRef]
  14. Y. Zhu, O. C. Mullins, “Temperature dependence of fluorescence of crude oils and related products,” Energy Fuels 6, 545–552 (1992).
    [CrossRef]
  15. D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001).
    [CrossRef]
  16. D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002).
    [CrossRef]
  17. P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976).
    [CrossRef]
  18. E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002).
    [CrossRef]
  19. A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
    [CrossRef]
  20. A. G. Ryder, “Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation,” Appl. Spectrosc. 56, 107–116 (2002).
    [CrossRef]
  21. D. Barr, “Modern wind turbines: a lubrication challenge,” Mach. Lubr. Mag. (2002), http://www.machinerylubrication.com .
  22. B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002).
    [CrossRef]
  23. M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
    [CrossRef]
  24. J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).
  25. S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
    [CrossRef]
  26. A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
    [CrossRef]
  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  28. S. E. Schwartz, D. J. Smolenski, “Development of an automatic engine oil-change indicator system,” in 1987 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1987), paper 870403.
    [CrossRef]
  29. G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

2002

D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002).
[CrossRef]

E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002).
[CrossRef]

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

D. Barr, “Modern wind turbines: a lubrication challenge,” Mach. Lubr. Mag. (2002), http://www.machinerylubrication.com .

B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002).
[CrossRef]

A. G. Ryder, “Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation,” Appl. Spectrosc. 56, 107–116 (2002).
[CrossRef]

2001

D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001).
[CrossRef]

M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
[CrossRef]

1998

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

N. Robinson, “Monitoring oil degradation with infrared spectroscopy,” Wearcheck Tech. Bull. 18 (1998), http://www.wearcheck.com .

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

1996

1995

T. D. Downare, O. C. Mullins, “Visible and near-infrared fluorescence of crude oils,” Appl. Spectrosc. 49, 754–764 (1995).
[CrossRef]

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

1994

S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
[CrossRef]

1992

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Y. Zhu, O. C. Mullins, “Temperature dependence of fluorescence of crude oils and related products,” Energy Fuels 6, 545–552 (1992).
[CrossRef]

O. C. Mullins, S. Mitra-Kirtley, Y. Zhu, “The electronic absorption edge of petroleum,” Appl. Spectrosc. 46, 1405–1411 (1992).
[CrossRef]

1991

1989

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

1983

R. Gerhards, “Comparison of modern NMR-multipulse experiments in the characterization of products from coal and mineral oils,” Fresenius Z. Anal. Chem. 316, 231–238 (1983).
[CrossRef]

1976

P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976).
[CrossRef]

Barr, D.

D. Barr, “Modern wind turbines: a lubrication challenge,” Mach. Lubr. Mag. (2002), http://www.machinerylubrication.com .

Barwise, A. J. G.

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

Basu, A.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Berndorfer, A.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Bertrand, P.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Buelna, C.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Caines, A. J.

A. J. Caines, R. F. Haycock, Automotive Lubricants Reference Book (Society of Automotive Engineers, Warrendale, Pa., 1996).

Camagni, P.

Campbell, J.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Caserio, M. C.

J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).

Cernohorský, T.

M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
[CrossRef]

Colombo, A.

Derenne, S.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Downare, T. D.

Escudero, J. L.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Faure, D.

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

Feely, M.

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

Gerhards, R.

R. Gerhards, “Comparison of modern NMR-multipulse experiments in the characterization of products from coal and mineral oils,” Fresenius Z. Anal. Chem. 316, 231–238 (1983).
[CrossRef]

Glynn, T. J.

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

Hamdan, A.

E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002).
[CrossRef]

Haycock, R. F.

A. J. Caines, R. F. Haycock, Automotive Lubricants Reference Book (Society of Automotive Engineers, Warrendale, Pa., 1996).

Hegazi, E.

E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002).
[CrossRef]

Hernándes Viñas, M.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Hipeaux, J. C.

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

Ismail, K.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Jain, S. K.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

John, P.

P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976).
[CrossRef]

Kapur, G. S.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

Koehler, C.

Krejccová, A.

M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Largeau, C.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Lee, H.-S.

S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
[CrossRef]

Legros, A.

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

Lin, Y.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

López Campillo, A.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Maleville, X.

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

Martinez, L.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Martínez Murciano, E.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Mishra, A. K.

D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002).
[CrossRef]

D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001).
[CrossRef]

Mitra-Kirtley, S.

Montoro, T.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Mukherjee, S.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

Mullins, O. C.

Omenetto, N.

Patra, D.

D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002).
[CrossRef]

D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001).
[CrossRef]

Poley, J.

J. Poley, “Diesel engine lube analysis,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 33–41.

Pouet, Y.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Pouzar, M.

M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
[CrossRef]

Pradier, B.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Qi, P.

Ralston, C. Y.

Roberts, J. D.

J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).

Robinson, N.

N. Robinson, “Monitoring oil degradation with infrared spectroscopy,” Wearcheck Tech. Bull. 18 (1998), http://www.wearcheck.com .

Rodriguez, L.

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Rossi, G.

Ryder, A. G.

A. G. Ryder, “Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation,” Appl. Spectrosc. 56, 107–116 (2002).
[CrossRef]

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

Sarpal, A. S.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

Schwartz, S. E.

S. E. Schwartz, D. J. Smolenski, “Development of an automatic engine oil-change indicator system,” in 1987 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1987), paper 870403.
[CrossRef]

Schwarz, S. E.

D. J. Smolenski, S. E. Schwarz, “Automotive engine-oil condition monitoring,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 17–32.

Sharma, B. K.

B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002).
[CrossRef]

Smolenski, D. J.

S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
[CrossRef]

D. J. Smolenski, S. E. Schwarz, “Automotive engine-oil condition monitoring,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 17–32.

S. E. Schwartz, D. J. Smolenski, “Development of an automatic engine oil-change indicator system,” in 1987 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1987), paper 870403.
[CrossRef]

Soutar, I.

P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976).
[CrossRef]

Stewart, R.

J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).

Stipanovic, A. J.

B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002).
[CrossRef]

Wang, S. S.

S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
[CrossRef]

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

Wu, X.

Zhu, Y.

O. C. Mullins, S. Mitra-Kirtley, Y. Zhu, “The electronic absorption edge of petroleum,” Appl. Spectrosc. 46, 1405–1411 (1992).
[CrossRef]

Y. Zhu, O. C. Mullins, “Temperature dependence of fluorescence of crude oils and related products,” Energy Fuels 6, 545–552 (1992).
[CrossRef]

Anal. Bioanal. Chem.

D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002).
[CrossRef]

Anal. Chem.

P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Energy Fuels

Y. Zhu, O. C. Mullins, “Temperature dependence of fluorescence of crude oils and related products,” Energy Fuels 6, 545–552 (1992).
[CrossRef]

Fresenius Z. Anal. Chem.

R. Gerhards, “Comparison of modern NMR-multipulse experiments in the characterization of products from coal and mineral oils,” Fresenius Z. Anal. Chem. 316, 231–238 (1983).
[CrossRef]

Ind. Eng. Chem. Res.

B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002).
[CrossRef]

Laser Chem.

M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992).
[CrossRef]

Lubr. Eng.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).

Lubric. Eng.

G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

Mach. Lubr. Mag.

D. Barr, “Modern wind turbines: a lubrication challenge,” Mach. Lubr. Mag. (2002), http://www.machinerylubrication.com .

Org. Geochem.

B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989).
[CrossRef]

Rev. Inst. Fr. Pet.

X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).

Sens. Actuators B

S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994).
[CrossRef]

Spectrochim. Acta A

A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002).
[CrossRef]

Talanta

D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001).
[CrossRef]

E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002).
[CrossRef]

M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001).
[CrossRef]

Wearcheck Tech. Bull.

N. Robinson, “Monitoring oil degradation with infrared spectroscopy,” Wearcheck Tech. Bull. 18 (1998), http://www.wearcheck.com .

Other

J. Poley, “Diesel engine lube analysis,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 33–41.

A. J. Caines, R. F. Haycock, Automotive Lubricants Reference Book (Society of Automotive Engineers, Warrendale, Pa., 1996).

D. J. Smolenski, S. E. Schwarz, “Automotive engine-oil condition monitoring,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 17–32.

J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).

A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366.
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

S. E. Schwartz, D. J. Smolenski, “Development of an automatic engine oil-change indicator system,” in 1987 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1987), paper 870403.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectra of fresh and used oil. Spectra for used oil show the age of the oil as follows: dotted-dashed curve, 5 months old; solid curve, 2 years old; dashed curve, 3 years old; dotted curve, 3 years and 7 months old.

Fig. 2
Fig. 2

Fluorescence emission spectra of fresh and used oil. Excitation wavelength, 300 nm; curves as for Fig. 1.

Fig. 3
Fig. 3

Fluorescence excitation spectrum from 200 to 420 nm recorded by monitoring of emission at 450 nm. The strong broad peak near 400 nm is most probably emission generated by two-photon absorption. Curves as for Fig. 1.

Tables (3)

Tables Icon

Table 1 Characteristics of the Oil Samples Studied

Tables Icon

Table 2 Relative Signal Intensities of the 13C NMR Spectra

Tables Icon

Table 3 Spectral Characteristics of the Fluorescence Spectra of Oils

Metrics