Abstract

A novel depolarization method for linearly polarized incident light that uses a liquid-crystal (LC) cell with randomly aligned hybrid orientation domains is theoretically described by use of Mueller matrix calculations. The depolarization effect of the incident linear polarization is confirmed with Stokes parameter measurements. The unique optical properties of the fabricated LC depolarizer are revealed; that is, the intensity of the transmitted light is independent of the rotation of the analyzer. The degree of polarization becomes zero when the retardation of the LC depolarizer coincides with a half-wavelength.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Mazurezyk, J. L. Zyskind, “Polarization dependent gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–6185 (1994).
    [CrossRef]
  2. B. H. Billings, “A monochromatic depolarizer,” J. Opt. Soc. Am. 41, 966–975 (1951).
    [CrossRef]
  3. F. Heismann, K. L. Tokuda, “Polarization-independent electro-optic depolarizer,” Opt. Lett. 20, 1008–1010 (1995).
    [CrossRef] [PubMed]
  4. P. Shen, J. C. Palais, C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
    [CrossRef]
  5. P. Shen, J. C. Palais, “Passive single-mode fiber depolarizer,” Appl. Opt. 38, 1686–1691 (1999).
    [CrossRef]
  6. N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
    [CrossRef]
  7. M. Honma, T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
    [CrossRef]
  8. B. Wen, R. G. Petschek, C. Rosenblatt, “Nematic liquid crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41, 1246–1250 (2002).
    [CrossRef] [PubMed]
  9. J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
    [CrossRef] [PubMed]
  10. M. Honma, T. Nose, “A liquid-crystal blazed-grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. (to be published).

2003

M. Honma, T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[CrossRef]

2002

J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
[CrossRef] [PubMed]

B. Wen, R. G. Petschek, C. Rosenblatt, “Nematic liquid crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41, 1246–1250 (2002).
[CrossRef] [PubMed]

2001

N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[CrossRef]

1999

1998

1995

1994

V. J. Mazurezyk, J. L. Zyskind, “Polarization dependent gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–6185 (1994).
[CrossRef]

1951

Billings, B. H.

Diorio, N. J.

N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[CrossRef]

Fisch, M. R.

N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[CrossRef]

Heismann, F.

Honma, M.

M. Honma, T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[CrossRef]

M. Honma, T. Nose, “A liquid-crystal blazed-grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. (to be published).

Kim, J.-H.

J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
[CrossRef] [PubMed]

Lin, C.

Mazurezyk, V. J.

V. J. Mazurezyk, J. L. Zyskind, “Polarization dependent gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–6185 (1994).
[CrossRef]

Nose, T.

M. Honma, T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[CrossRef]

M. Honma, T. Nose, “A liquid-crystal blazed-grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. (to be published).

Palais, J. C.

Petschek, R. G.

Rosenblatt, C.

Shen, P.

Tokuda, K. L.

Wen, B.

West, J. L.

N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[CrossRef]

Yokoyama, H.

J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
[CrossRef] [PubMed]

Yoneya, M.

J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
[CrossRef] [PubMed]

Zyskind, J. L.

V. J. Mazurezyk, J. L. Zyskind, “Polarization dependent gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–6185 (1994).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

V. J. Mazurezyk, J. L. Zyskind, “Polarization dependent gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–6185 (1994).
[CrossRef]

J. Appl. Phys.

N. J. Diorio, M. R. Fisch, J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

M. Honma, T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[CrossRef]

Nature

J.-H. Kim, M. Yoneya, H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420, 159–162 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Other

M. Honma, T. Nose, “A liquid-crystal blazed-grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simple model of the LC depolarizer consisting of multiple λ/2 phase plates with different optic axes.

Fig. 2
Fig. 2

Micrograph of the fabricated LC cell taken by the polarizing microscope under crossed Nichols. The zigzag arrow denotes the rubbing path.

Fig. 3
Fig. 3

Relationship between the intensity of the transmitted light and the angle between the transmission axis of the analyzer and the x axis when the incident polarization direction is parallel to the x axis.

Fig. 4
Fig. 4

Relationship between the intensity of the transmitted light and the angle between the transmission axis of the analyzer and the x axis for various incident polarization directions. The applied voltage is 1.2 V.

Fig. 5
Fig. 5

Stokes parameters and degree of polarization as a function of applied voltage when the incident polarization direction is parallel to the x axis.

Fig. 6
Fig. 6

Experimental setup for eliminating the polarization-dependent sensitivity of a photodetector by use of the LC depolarizer.

Fig. 7
Fig. 7

Relationship between the measured light intensity and the angle between the fast axis of the λ/4 plate and the x axis.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sai= 1Wj=1N wjsij=0 i=1, 2, 3,
DOP= sa12+sa22+sa321/2sa0=0,
s0s1s2s3= 10000cos 4ϕsin 4ϕ00sin 4ϕ-cos 4ϕ000001cos 2ψPsin 2ψP0= 1cos4ϕ-2ψPsin4ϕ-2ψP0.
0π/2 sidϕ = 0 i = 1, 2, 3;
j=1N Wj cos 4ϕj=0,
j=1N Wj sin 4ϕj=0.

Metrics