Abstract

One condition for precise multiangle algorithms for estimating sea and land surface temperature with the data from the Advanced Along Track Scanning Radiometer is accurate knowledge of the angular variation of surface emissivity in the thermal IR spectrum region. Today there are very few measurements of this variation. The present study is conducted to provide angular emissivity measurements for five representative samples (water, clay, sand, loam, gravel). The measurements are made in one thermal IR broadband (8–13 μm) and three narrower bands (8.2–9.2, 10.3–11.3, and 11.5–12.5 μm) at angles of 0°–60° (at 5° increments) to the surface normal. The results show a general decrease in emissivity with increasing viewing angles, with the 8.2–9.2-μm channel the most sensitive to this dependence and sand the sample showing the greatest variation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
    [CrossRef]
  2. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
    [CrossRef]
  3. W. G. Rees, S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
    [CrossRef]
  4. J. Labed, M. P. Stoll, “Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils,” Int. J. Remote Sens. 12, 2299–2310 (1991).
    [CrossRef]
  5. W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
    [CrossRef]
  6. J. A. Sobrino, J. Cuenca, “Angular variation of emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931–3936 (1999).
    [CrossRef]
  7. C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.
  8. M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
    [CrossRef]
  9. M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
    [CrossRef]

2000 (1)

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

1999 (2)

J. A. Sobrino, J. Cuenca, “Angular variation of emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931–3936 (1999).
[CrossRef]

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

1997 (1)

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

1996 (1)

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

1992 (1)

W. G. Rees, S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

1991 (1)

J. Labed, M. P. Stoll, “Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils,” Int. J. Remote Sens. 12, 2299–2310 (1991).
[CrossRef]

1988 (1)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Abuhassan, K.

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

Abuhassan, N. K.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Becker, F.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

Brogniez, G.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Buis, J. P.

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Cuenca, J.

Feng, Y.-Z.

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Haeffelin, G.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

James, S. P.

W. G. Rees, S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

Labed, J.

J. Labed, M. P. Stoll, “Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils,” Int. J. Remote Sens. 12, 2299–2310 (1991).
[CrossRef]

Legrand, M.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Li, Z.-L.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

Masuda, K.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Pietras, C.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Rees, W. G.

W. G. Rees, S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

Sicard, M.

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

Snyder, W. C.

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Sobrino, J. A.

J. A. Sobrino, J. Cuenca, “Angular variation of emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931–3936 (1999).
[CrossRef]

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

Spyak, P. R.

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

Stoll, M. P.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

J. Labed, M. P. Stoll, “Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils,” Int. J. Remote Sens. 12, 2299–2310 (1991).
[CrossRef]

Takashima, T.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Takayama, Y.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

Wan, Z.

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Zhang, Y.

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Appl. Opt. (1)

Int. J. Remote Sens. (3)

W. G. Rees, S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

J. Labed, M. P. Stoll, “Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils,” Int. J. Remote Sens. 12, 2299–2310 (1991).
[CrossRef]

J. A. Sobrino, Z.-L. Li, M. P. Stoll, F. Becker, “Multichannel and multiangle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17, 2089–2114 (1996).
[CrossRef]

J. Atmos. Ocean Technol. (1)

M. Legrand, C. Pietras, G. Brogniez, G. Haeffelin, N. K. Abuhassan, M. Sicard, “A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument,” J. Atmos. Ocean Technol. 17, 1203–1214 (2000).
[CrossRef]

Opt. Eng. (1)

M. Sicard, P. R. Spyak, G. Brogniez, M. Legrand, K. Abuhassan, C. Pietras, J. P. Buis, “Thermal infrared field radiometer for vicarious cross-calibration: characterization and comparisons with other field instruments,” Opt. Eng. 38, 345–356 (1999).
[CrossRef]

Remote Sens. Environ. (2)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[CrossRef]

W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Thermal infrared (3–14-μm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997).
[CrossRef]

Other (1)

C. Pietras, N. K. Abuhassan, G. Haeffelin, G. Brogniez, M. Legrand, J. P. Buis, “Development of a high precision thermal infrared field radiometer,” inProceedings of the Sixth ISPRS Symposium, Val d’Isere, France, G. Guyot, ed. (International Society for Photogrammetry and Remote Sensing, Toulouse, France, 1994), pp. 809–815.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral response of the Cimel 312 channels (λeff,1 = 10.54 μm, λeff,2 = 11.96 μm, λeff,3 = 10.80 μm, λeff,4 = 8.82 μm).

Fig. 2
Fig. 2

Angular variation of relative-to-nadir emissivity of all samples.

Fig. 3
Fig. 3

Comparison between Masuda et al.’s2 results and ours.

Tables (5)

Tables Icon

Table 1 Absolute Nadir Emissivity and Difference Δεi = εi(0°) - εi(θ) for Water

Tables Icon

Table 2 Analogous to Table 1 but for Sand

Tables Icon

Table 3 Analogous to Table 1 but for Clay

Tables Icon

Table 4 Analogous to Table 1 but for Loam

Tables Icon

Table 5 Analogous to Table 1 but for Gravel

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

εθ,i=exp-αi/Tθrad,i-1.3 exp-αi/Tatm0,iexp-αi/Ts-1.3 exp-αi/Tatm0,i,
εr,θ,i=exp-αi/Tθrad,i-1.3 exp-αi/Tatm0,iexp-αi/Trad0,i-1.3 exp-αi/Tatm0,i,
δεθ,i=αiB-C2AB-CTθrad,i2 δTθrad,i2+A-CBTj2 δTj2+B-ACTatm02 δTatm0,i21/2,
A=exp-αi/Tθrad,i,
B=exp-αi/Ts for Eq. 1 or B=exp-α/Trad0,i for Eq. 2,
C=1.3 exp-αi/Tatm0,i,

Metrics