Abstract

We present data on the linear (transmission, index of refraction) and nonlinear (second-order susceptibility) optical properties of the quaternary semiconductor AgGaGe5Se12 with orthorhombic symmetry—a solid solution in the AgxGaxGe1-xSe2 system with x = 0.17. The nonlinear coefficients are estimated from phase-matched second-harmonic generation near 3 μm. After numerical analysis of the phase-matching configurations for three-wave nonlinear interactions, the first experimental results on difference-frequency mixing, producing tunable (4–7.5-μm) femtosecond pulses at a 1-kHz repetition rate, are described. The pulses of only five optical cycles (FWHM = 84 fs) are generated near 5 μm with energy of 0.5 μJ. Because of its higher damage threshold, larger birefringence and bandgap, and greater variety of phase-matching schemes, AgGaGe5Se12 could become an alternative to AgGaS2 and AgGaSe2, more widely used in high-power and specific applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
    [CrossRef] [PubMed]
  2. B. Golubovic, M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in Type I and Type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
    [CrossRef]
  3. F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
    [CrossRef]
  4. G. C. Bhar, R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
    [CrossRef]
  5. V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
    [CrossRef]
  6. G. C. Catella, D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July1998), pp. 28–36.
  7. V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
    [CrossRef]
  8. P. G. Schunemann, T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July1998), pp. 23–27.
  9. V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].
  10. N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).
    [CrossRef]
  11. P. Hamm, M. Lim, R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
    [CrossRef]
  12. H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
    [CrossRef]
  13. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
    [CrossRef]
  14. J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
    [CrossRef]
  15. J. Song, J. F. Xia, Z. Zhang, D. Strickland, “Mid-infrared pulses generated from the mixing output of an amplified, dual-wavelength Ti:sapphire system,” Opt. Lett. 27, 200–202 (2002).
    [CrossRef]
  16. H. Hahn, G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
    [CrossRef]
  17. R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
    [CrossRef]
  18. O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
    [CrossRef]
  19. R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
    [CrossRef]
  20. B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.
  21. E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].
  22. I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
    [CrossRef]
  23. An American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987 (Institute of Electrical and Electronics Engineers, New York, 1988).
  24. V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).
  25. N. Zhavoronkov, V. Petrov, F. Noack, “Powerful and tunable operation of a 1–2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999).
    [CrossRef]
  26. Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
    [CrossRef]

2002 (3)

H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
[CrossRef]

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

J. Song, J. F. Xia, Z. Zhang, D. Strickland, “Mid-infrared pulses generated from the mixing output of an amplified, dual-wavelength Ti:sapphire system,” Opt. Lett. 27, 200–202 (2002).
[CrossRef]

2001 (2)

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
[CrossRef]

2000 (2)

F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
[CrossRef]

1999 (1)

1998 (3)

B. Golubovic, M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in Type I and Type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
[CrossRef]

G. C. Catella, D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July1998), pp. 28–36.

P. G. Schunemann, T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July1998), pp. 23–27.

1997 (1)

P. Hamm, M. Lim, R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
[CrossRef]

1996 (1)

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

1994 (2)

1991 (1)

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

1981 (2)

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
[CrossRef]

1980 (3)

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

1972 (1)

G. C. Bhar, R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

1967 (1)

H. Hahn, G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
[CrossRef]

Alimova, L. L.

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

Andreev, Y. M.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Badikov, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

Badikov, V. V.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Belov, N. V.

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

Bhar, G. C.

G. C. Bhar, R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

Burlage, D.

G. C. Catella, D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July1998), pp. 28–36.

Catella, G. C.

G. C. Catella, D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July1998), pp. 28–36.

Cheung, I. W.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Chizhikov, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

Corkum, P. B.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Elworthy, T. P.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Fernelius, N. C.

N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).
[CrossRef]

Fraser, J. M.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Geiko, L. G.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Geiko, P. P.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Golubovic, B.

Goodchild, R. G.

R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
[CrossRef]

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

Gorgut, G. P.

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

Gulyak, A. V.

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

Hahn, H.

H. Hahn, G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
[CrossRef]

Hamm, P.

Hochstrasser, R. M.

P. Hamm, M. Lim, R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
[CrossRef]

Hughes, O. H.

R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
[CrossRef]

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

Ivashchenko, M. V.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Joffre, M.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Kaindl, R. A.

Karapuzikov, A. I.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Legare, F.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Likforman, J. P.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Lim, M.

P. Hamm, M. Lim, R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
[CrossRef]

Lisa, L. V.

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

Lomzin, A. F.

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

Lopez-Rivera, S. A.

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

Maeda, S.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Maekawa, H.

H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
[CrossRef]

Matveev, I. N.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Negrete, P.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Noack, F.

V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

N. Zhavoronkov, V. Petrov, F. Noack, “Powerful and tunable operation of a 1–2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999).
[CrossRef]

Ohachi, T.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Olekseyuk, I. D.

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

Pamplin, B. R.

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Panyutin, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

N. Zhavoronkov, V. Petrov, F. Noack, “Powerful and tunable operation of a 1–2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999).
[CrossRef]

F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
[CrossRef] [PubMed]

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

Pobedimskaya, E. A.

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

Podenas, D.

H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
[CrossRef]

Pollak, T. M.

P. G. Schunemann, T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July1998), pp. 23–27.

Pshenichnikov, S. M.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Reed, M. K.

Reimann, K.

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

Rychik, O. V.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Sanderson, R.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Schunemann, P. G.

P. G. Schunemann, T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July1998), pp. 23–27.

Seifert, F.

Shcherbakov, S. I.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Sheina, S. G.

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

Sherstov, I. V.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Shevyrdyaeva, G.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

Shevyrdyaeva, G. S.

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

Smith, R. C.

G. C. Bhar, R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

Song, J.

Strick, G.

H. Hahn, G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
[CrossRef]

Strickland, D.

Tominaga, K.

H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
[CrossRef]

Trotsenko, N. K.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Tyulyupa, A. G.

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

Ustinov, N. D.

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Villeneuve, D. M.

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Voevodin, V. G.

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Weiner, A. M.

Whitlow, H. J.

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Woerner, M.

Woolley, J. A.

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

Woolley, J. C.

R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
[CrossRef]

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

Wurm, M.

Xia, J. F.

Zhang, Z.

Zhavoronkov, N.

Appl. Opt. (1)

Appl. Phys. B (1)

J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
[CrossRef]

Can. J. Phys. (1)

R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
[CrossRef]

Inorg. Mater. (1)

V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991) [Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].

J. Alloys Compd. (1)

I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
[CrossRef]

J. Chem. Phys. (1)

P. Hamm, M. Lim, R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
[CrossRef]

J. Opt. A (1)

V. Petrov, F. Rotermund, F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Maekawa, K. Tominaga, D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm-1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
[CrossRef]

Mater. Res. Bull. (2)

G. C. Catella, D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July1998), pp. 28–36.

P. G. Schunemann, T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July1998), pp. 23–27.

Naturwissenschaften (1)

H. Hahn, G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
[CrossRef]

Opt. Commun. (1)

F. Rotermund, V. Petrov, F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

Opt. Lett. (3)

Phys. Status Solidi A (2)

G. C. Bhar, R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

R. G. Goodchild, O. H. Hughes, J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
[CrossRef]

Prog. Cryst. Growth Charact. (1)

N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).
[CrossRef]

Quantum Electron. (1)

Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001) [Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

Solid State Commun. (1)

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980) [Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
[CrossRef]

Sov. Phys. Dokl. (1)

E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981) [Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].

Other (3)

An American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987 (Institute of Electrical and Electronics Engineers, New York, 1988).

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS2,” Opt. Mater. (to be published).

B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” inProceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Unpolarized transmission from 0.5 to 20 μm of a 0.48-mm-thick sample of AgGaGe5Se12 cut at φ = 0° and θ = 51°.

Fig. 2
Fig. 2

SHG phase matching in the principal planes of AgGaGe5Se12: heavy curve, below, fundamental wavelengths for which d eff ≠ 0; thin curve, cases in which d eff vanishes. The inverse GVM [Δ31 = 1/v 3 - 1/v 1, where v 1, (=v 2), v 3 denote the group velocities at λ1, (=λ2), and λ3] is shown in the upper part only for cases in which d eff ≠ 0.

Fig. 3
Fig. 3

Top, walk-off angles; bottom, SHG internal angular acceptance in the principal planes of AgGaGe5Se12. Only cases with d eff ≠ 0 from Fig. 2 are included.

Fig. 4
Fig. 4

Type I (oo-e) phase matching for sum- and difference-frequency mixing or optical parametric amplification (generation) in the xz plane of AgGaGe5Se12 and several values of polar angle θ. The curves are terminated by the transparency range of the crystal; 1/λ3 = 1/λ1 + 1/λ2 holds with λ1 ≥ λ2 > λ3.

Fig. 5
Fig. 5

(a) Inverse GVM versus DFM wavelength, solid curves, in AGS and, dashed curves, in the xz plane of AgGaGe5Se12; (b) figure of merit (FM) for DFM, solid curve, in AGS and, dashed curve, in AgGaGe5Se12 defined as FM = (d eff1)2/n 1 n 2 n 3.

Fig. 6
Fig. 6

DFM spectrum centered near 5000 nm obtained with a thin (0.48-mm) AgGaGe5Se12 sample.

Fig. 7
Fig. 7

Cross-correlation trace corresponding to the spectrum in Fig. 6. The deconvolved FWHM assuming that the Gaussian pulse shapes amounts to 84 fs.

Tables (2)

Tables Icon

Table 1 Commercially and Quasi-Commercially Available Crystals Applicable for the DFM Scheme Compared with AgGaGe5Se12

Tables Icon

Table 2 Dispersion of Refractive Indices, Experimental Values

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

nx2=5.7182737-0.24365570/0.12550405-λ2-24.729565/250-λ2, ny2=6.5626531-0.32805600/0.12928073-λ2-116.75498/400-λ2, nz2=6.6688973-0.33109498/0.12679454-λ2-136.03294/400-λ2,

Metrics