Abstract

We describe a technique for surface and subsurface micromachining of glass substrates by using tightly focused femtosecond laser pulses at a wavelength of 1660 nm. A salient feature of pulsed laser micromachining is its ability to drill subsurface tunnels into glass substrates. To demonstrate a potential application of this micromachining technique, we fabricate simple microfluidic structures on a glass plate. The use of a cover plate that seals the device by making point-to-point contact with the flat surface of the substrate is necessary to prevent the evaporation of liquids in open channels and chambers. Methods for protecting and sealing the micromachined structures for microfluidic applications are discussed.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
    [CrossRef]
  2. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  4. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
    [CrossRef]
  5. P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
    [CrossRef]
  6. X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  7. C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [CrossRef]
  8. Y. Li, K. Itoh, W. Watanabe, Kazuhiro. Yamada, D. Kuroda, J. Nishii, Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
    [CrossRef]
  9. H. Bayley, P. S. Cremer, “Stochastic sensors inspired by biology,” Nature 413, 226–230 (2001).
    [CrossRef] [PubMed]
  10. E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
    [CrossRef]
  11. P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
    [CrossRef] [PubMed]
  12. J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
    [CrossRef]
  13. T. Thorsen, S. J. Maerlk, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
    [CrossRef] [PubMed]
  14. C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
    [CrossRef] [PubMed]

2003 (2)

C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef] [PubMed]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

2002 (2)

2001 (5)

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

Y. Li, K. Itoh, W. Watanabe, Kazuhiro. Yamada, D. Kuroda, J. Nishii, Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

H. Bayley, P. S. Cremer, “Stochastic sensors inspired by biology,” Nature 413, 226–230 (2001).
[CrossRef] [PubMed]

J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
[CrossRef]

1999 (2)

E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
[CrossRef]

P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
[CrossRef] [PubMed]

1997 (1)

X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

1995 (1)

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Bayley, H.

H. Bayley, P. S. Cremer, “Stochastic sensors inspired by biology,” Nature 413, 226–230 (2001).
[CrossRef] [PubMed]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Chen, C.

C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef] [PubMed]

Cremer, P. S.

H. Bayley, P. S. Cremer, “Stochastic sensors inspired by biology,” Nature 413, 226–230 (2001).
[CrossRef] [PubMed]

Du, D.

X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Folch, A.

C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef] [PubMed]

Fujimoto, J. G.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Garcia, J. F.

Hartl, I.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

Hirdes, D.

C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef] [PubMed]

Ippen, E. P.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Ismagilov, R. F.

P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
[CrossRef] [PubMed]

Itoh, K.

Jiang, Y.

Kenis, P. J. A.

P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
[CrossRef] [PubMed]

Kowalevicz, A. M.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Kuroda, D.

Li, Y.

Liu, X.

X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Maerlk, S. J.

T. Thorsen, S. J. Maerlk, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[CrossRef] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

McDonald, J. C.

J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
[CrossRef]

Metallo, S. J.

J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
[CrossRef]

Minoshima, K.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Mir, K.

E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
[CrossRef]

Mourou, G.

X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Nishii, J.

Pronko, P. P.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Quake, S. R.

T. Thorsen, S. J. Maerlk, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[CrossRef] [PubMed]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Shchepinov, M.

E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
[CrossRef]

Singh, R. K.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Southern, E.

E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
[CrossRef]

Thorsen, T.

T. Thorsen, S. J. Maerlk, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[CrossRef] [PubMed]

Watanabe, W.

Whitesides, G. M.

J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
[CrossRef]

P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
[CrossRef] [PubMed]

Yamada, Kazuhiro.

Anal. Chem. (1)

J. C. McDonald, S. J. Metallo, G. M. Whitesides, “Fabrication of a configurable, single-use microfluidic device,” Anal. Chem. 73, 5645–5650 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

X. Liu, D. Du, G. Mourou, “Laser ablation and micro-machining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

J. Appl. Phys. (1)

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Nat. Genet. (1)

E. Southern, K. Mir, M. Shchepinov, “Molecular interactions on microarrays,” Nat. Genet. 21, 1–5 (1999).
[CrossRef]

Nature (1)

H. Bayley, P. S. Cremer, “Stochastic sensors inspired by biology,” Nature 413, 226–230 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photon. News (1)

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, J. G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Opt. Photon. News 14, 44–49 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

C. Chen, D. Hirdes, A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef] [PubMed]

Science (2)

P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science 285, 83–85 (1999).
[CrossRef] [PubMed]

T. Thorsen, S. J. Maerlk, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics