Abstract

We describe a technique for surface and subsurface micromachining of glass substrates by using tightly focused femtosecond laser pulses at a wavelength of 1660 nm. A salient feature of pulsed laser micromachining is its ability to drill subsurface tunnels into glass substrates. To demonstrate a potential application of this micromachining technique, we fabricate simple microfluidic structures on a glass plate. The use of a cover plate that seals the device by making point-to-point contact with the flat surface of the substrate is necessary to prevent the evaporation of liquids in open channels and chambers. Methods for protecting and sealing the micromachined structures for microfluidic applications are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription