Abstract

We introduce a new method for temperature profile measurements in the mesopause region in the altitude range from 80 to 105 km. A frequency-doubled narrowband alexandrite laser is used to scan the iron resonance line at 386 nm. The isotopic shifts of the iron isotopes and the laser bandwidth are derived by the measurement itself. Neglecting the minor isotopes results in large temperature errors up to 28 K. We discuss the derived temperatures in comparison with results of our potassium temperature lidar. The iron lidar-derived temperatures have typically a statistical error of 0.4 K and vary by less than 10 K, which is due to the daily natural variation. The all-solid-state system, which is compact, can be containerized and deployed at remote locations.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  2. R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
    [CrossRef]
  3. C. Y. She, J. R. Yu, H. Latifi, R. B. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesopheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [CrossRef] [PubMed]
  4. U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
    [CrossRef]
  5. U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
    [CrossRef]
  6. C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
    [CrossRef]
  7. C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
    [CrossRef]
  8. J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.
  9. J. A. Gelbwachs, “Iron Bolzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
    [CrossRef] [PubMed]
  10. C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
    [CrossRef]
  11. S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).
  12. V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
    [CrossRef]
  13. M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
    [CrossRef]
  14. R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).
  15. J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).
  16. M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
    [CrossRef]
  17. D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).
  18. R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
    [CrossRef]

2002

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

2001

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

2000

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

1998

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

1996

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

1994

1993

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

1992

1990

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

1988

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

1985

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Alpers, M.

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

Bills, R. B.

Braul, J.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Chu, X.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Eska, V.

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Fricke-Begemann, C.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Furenlid, I.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Gardner, C. S.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Gelbwachs, J. A.

Gerding, M.

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

Höffer, J.

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

Höffner, J.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Kaletta, D.

D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).

Kurucz, R. L.

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Latifi, H.

Lautenbach, J.

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Menzel, P.

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Neuber, R.

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

Pan, W.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Papen, G. C.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Raizada, S.

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

She, C. Y.

Tepley, C. A.

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

Testerman, L.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Von der Gathen, P.

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

von Zahn, U.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Yu, J. R.

Appl. Opt.

Geophys. Res. Lett.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

J. Atmos. Terr. Phys.

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res.

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

Phys. Scr.

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

Other

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).

D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics