Abstract

We introduce a new method for temperature profile measurements in the mesopause region in the altitude range from 80 to 105 km. A frequency-doubled narrowband alexandrite laser is used to scan the iron resonance line at 386 nm. The isotopic shifts of the iron isotopes and the laser bandwidth are derived by the measurement itself. Neglecting the minor isotopes results in large temperature errors up to 28 K. We discuss the derived temperatures in comparison with results of our potassium temperature lidar. The iron lidar-derived temperatures have typically a statistical error of 0.4 K and vary by less than 10 K, which is due to the daily natural variation. The all-solid-state system, which is compact, can be containerized and deployed at remote locations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  2. R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
    [CrossRef]
  3. C. Y. She, J. R. Yu, H. Latifi, R. B. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesopheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [CrossRef] [PubMed]
  4. U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
    [CrossRef]
  5. U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
    [CrossRef]
  6. C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
    [CrossRef]
  7. C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
    [CrossRef]
  8. J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.
  9. J. A. Gelbwachs, “Iron Bolzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
    [CrossRef] [PubMed]
  10. C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
    [CrossRef]
  11. S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).
  12. V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
    [CrossRef]
  13. M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
    [CrossRef]
  14. R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).
  15. J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).
  16. M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
    [CrossRef]
  17. D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).
  18. R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
    [CrossRef]

2002 (2)

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

2001 (1)

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

2000 (1)

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

1998 (2)

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

1996 (2)

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

1994 (1)

1993 (1)

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

1992 (1)

1990 (1)

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

1988 (1)

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

1985 (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Alpers, M.

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

Bills, R. B.

Braul, J.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Chu, X.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Eska, V.

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Fricke-Begemann, C.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Furenlid, I.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Gardner, C. S.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Gelbwachs, J. A.

Gerding, M.

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

Höffer, J.

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

Höffner, J.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).

Kaletta, D.

D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).

Kurucz, R. L.

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Latifi, H.

Lautenbach, J.

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Menzel, P.

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Neuber, R.

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

Pan, W.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Papen, G. C.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

Raizada, S.

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

She, C. Y.

Tepley, C. A.

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

Testerman, L.

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

Von der Gathen, P.

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

von Zahn, U.

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Yu, J. R.

Appl. Opt. (2)

Geophys. Res. Lett. (6)

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observation of middle atmosphere temperatures, Fe densities and polar mesopheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

S. Raizada, C. A. Tepley, “Iron Boltzmann lidar temperature and density observations from Arecibo—an initial comparison with other techniques,” Geophys. Res. Lett. 29, 10.1029/2001GL014535 (2002).

M. Alpers, J. Höffner, U. von Zahn, “Iron atom densities in the polar mesosphere from lidar observations,” Geophys. Res. Lett. 17, 2345–1248 (1990).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn, J. Höffner, V. Eska, M. Alpers, “The mesopause altitude: only two distinctive levels worldwide?” Geophys. Res. Lett. 23, 3231–3234 (1996).
[CrossRef]

C. Fricke-Begemann, J. Höffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, 2067–2071 (2002).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res. (4)

R. Neuber, P. Von der Gathen, U. von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

C. Y. She, U. von Zahn, “Concept of a two-level mesopause: support through new lidar observations,” J. Geophys. Res. 103, 5855–5863 (1998).
[CrossRef]

M. Gerding, M. Alpers, U. von Zahn, “Atmospheric Ca and Ca+ layers: midlatitude observation and modeling,” J. Geophys. Res. 105, 27131–27146 (2000).
[CrossRef]

V. Eska, J. Höffer, U. von Zahn, “The upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998).
[CrossRef]

Phys. Scr. (1)

R. L. Kurucz, “Atomic data for interpreting stellar spectra: isotopic and hyperfine data,” Phys. Scr. T47, 110–118 (1993).
[CrossRef]

Other (4)

D. Kaletta, “Isotopieverschiebung im eisen-I-spektrum,” Diploma thesis (Institut für Experimentalphysik, University of Hannover, Hannover, Germany, 1969).

R. L. Kurucz, I. Furenlid, J. Braul, L. Testerman, “Solar flux atlas from 296 to 1300 nm,” National Solar Observatory Atlas No. 1 (National Optical Astronomy Observatory, Tucson, Ariz., 1984).

J. Höffner, “Messungen von eisendichten in der polaren hochatmosphäre”, Diploma thesis (University of Bonn, Bonn, Germany, 1990).

J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigemes, D. A. Lorentzen, eds. (The University Courses on Svalbard, Longyearbyen, Norway, 2003), pp. 65–67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photon-count profile with 200-m altitude resolution integrated over 2 min. Data are from 12 December 2002 at 20:40 UT.

Fig. 2
Fig. 2

Spectrum of the 386-nm line at 89 ± 1 km altitude for 12 December 2002 at 20:17–21:47 UT. Left panel: fit with a single resonance line. Right panel: fit with all resonance lines. Upper part: the observed spectrum is shown by the dotted curve with error bars; the fitted spectrum is shown by the solid curve. Lower part: normalized difference between observation and fit.

Fig. 3
Fig. 3

Isotopic shifts of Fe54 (-727 MHz) and Fe57 (426 MHz) relative to Fe56 that we derived by fitting the frequency at different altitudes for 12 December 2002 at 20:17–21:47 UT.

Fig. 4
Fig. 4

Variation of the backscatter cross section for typical atmospheric temperatures. The lower curve shows the location of the different isotopes and their relative abundance.

Fig. 5
Fig. 5

Temperature profile observed on 10 December by potassium lidar (shaded areas) (3-h integration time). Left panel: iron temperature profile of 7 December (2-h integration time). Right panel: iron temperature profile of 12 December (1.5-h integration time).

Tables (1)

Tables Icon

Table 1 Isotope Abundance by Kurucz,18 Isotopic Shift by Kaletta,17 and Isotopic Shift Determined by the Iron Lidar at 89-km Altitude with Statistical Error

Metrics