Abstract

A new range-finding technique that uses both double sinusoidal phase modulation and quasi-two-wavelength interferometry is described. Two independent interference signals are generated with respect to two different wavelengths on a time-sharing basis. We clarify that external disturbances of these interference signals are eliminated by both feedback control and differential detection and that the feedback control does not affect the distance measurement. A single distributed Bragg reflector laser diode allows us to simplify the optical setup and to improve the measurement accuracy. After discussing a measurement range, we estimate a measurement error by making several measurements.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971).
    [CrossRef] [PubMed]
  2. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
    [CrossRef] [PubMed]
  3. A. J. den Boef, “Two wavelength scanning spot interferometer using single-frequency diode lasers,” Appl. Opt. 27, 306–311 (1988).
    [CrossRef]
  4. O. Sasaki, H. Sasazaki, T. Suzuki, “Two-wavelength sinusoidal phase-modulating laser-diode interferometer insensitive to external disturbances,” Appl. Opt. 30, 4040–4045 (1991).
    [CrossRef] [PubMed]
  5. C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
    [CrossRef]
  6. T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
    [CrossRef]
  7. T. Suzuki, T. Muto, O. Sasaki, T. Maruyama, “Wavelength-multiplexed phase-locked laser diode interferometer using a phase-shifting technique,” Appl. Opt. 36, 6196–6202 (1997).
    [CrossRef]
  8. O. Sasaki, T. Yoshida, T. Suzuki, “Double sinusoidal phase modulating laser diode interferometer for distance measurement,” Appl. Opt. 30, 3617–3621 (1991).
    [CrossRef] [PubMed]
  9. T. Suzuki, H. Suda, O. Sasaki, “Double sinusoidal phase-modulating DBR laser diode interferometer for distance measurement,” Appl. Opt. 42, 60–66 (2003).
    [CrossRef] [PubMed]
  10. O. Sasaki, H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25, 3137–3140 (1986).
    [CrossRef] [PubMed]
  11. G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
    [CrossRef]
  12. O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
    [CrossRef]

2003 (1)

2000 (1)

G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
[CrossRef]

1997 (1)

1996 (1)

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

1991 (2)

1990 (1)

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

1988 (1)

1986 (2)

O. Sasaki, H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25, 3137–3140 (1986).
[CrossRef] [PubMed]

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

1973 (1)

1971 (1)

Bosch, T.

G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
[CrossRef]

den Boef, A. J.

Maruyama, T.

T. Suzuki, T. Muto, O. Sasaki, T. Maruyama, “Wavelength-multiplexed phase-locked laser diode interferometer using a phase-shifting technique,” Appl. Opt. 36, 6196–6202 (1997).
[CrossRef]

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

Mourat, G.

G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
[CrossRef]

Muto, T.

Okazaki, H.

Polhemus, C.

Sasaki, O.

Sasazaki, H.

Servagent, N.

G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
[CrossRef]

Suda, H.

Suzuki, T.

Takahashi, K.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

Wickramasinghe, K.

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Williams, C. C.

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Wyant, J. C.

Yoshida, T.

Appl. Opt. (8)

J. Appl. Phys. (1)

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Opt. Eng. (3)

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

G. Mourat, N. Servagent, T. Bosch, “Distance measurement using the self-mixing effect in a three electrode distributed Bragg reflector laser diode,” Opt. Eng. 39, 738–743 (2000).
[CrossRef]

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the DSPM technique and QTWI. (a) Basic architecture of the system: BS1, BS2, beam splitters; M2, mirror; FBC, feedback controller; PD, photodetector. (b) Modulating current for the DSPM technique, (c) DSPM interference signal, (d) separated interference signals for the QTWI.

Fig. 2
Fig. 2

Block diagram of the feedback controller: S/H, sample-and-hold circuit; ZCC, zero-cross circuit; MUL, multiplier; LPF, low-pass filter; PCTL, proportional controller; FBC, feedback controller.

Fig. 3
Fig. 3

Experimental setup: L’s, lenses; BS1, BS2, beam splitters; M, mirror; FBC, feedback controller; PH, pinhole; PD, photodetector; SPU, signal-processing unit; LM, laser-diode modulator; RL, reflection-tuning layer; PL, phase-tuning layer; AL, active layer; AD, analog to digital.

Fig. 4
Fig. 4

Block diagram of the signal-processing unit: OSC1, OSC2, oscillators; SPG, sampling pulse generator; SP, sampling pulse; SPU, signal-processing unit.

Fig. 5
Fig. 5

Observations of (a) a DSPM signal, (b) a DSPM interference signal, and (c) a separate DSPM interference signal for QTWI.

Fig. 6
Fig. 6

Interference signals observed when the feedback control is (a) off and (b) on. Dotted curves indicate the phase deviation caused by the external disturbance.

Fig. 7
Fig. 7

Numerical calculation of phase detection with respect to Z L in SPM interferometry.

Fig. 8
Fig. 8

Absolute distance measured at L ∼ 2.6 mm.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ILt=m cosωct+θ,
IHt=Δi cosnωct,
St=a+b cosZL cosωct+θ+ZH cosnωct+α0+δt,
ZL=4πLβm/λ02,
ZH=4πLβΔi/λ02
α0=4πL/λ0
δt=4πdt/λ0.
Sht=a+b cosZL cosωct+θ+α0+δt.
Ft=Kf sinα0+δt,
αc=α0-4πL/λ02λa,
δct=δt-4πL/λ02λbt,
Zc=ZH-8πLΔλ/λ03λa+λbt.
Δλ=2βΔi.
Sit=a+b cosZL cosωct+θ+αii=1, 2,
α1=αc+ZH+δct,
α2=αc-ZH+δct.
Δα=2ZH,
L=Λ/4πΔα,
Λ=λ02/Δλ
δL=Λ/4πδΔα,
δLmax=Λ/4πδΔαmax.
Lmin=λ02/4πβmZLmin

Metrics