Abstract

An annular pupil, which can be used to produce a Bessel beam, when combined with radially polarized illumination promises improvements in microscope resolution, increased packing density for optical storage, and finer optical lithography. When combined with a circular detection pupil in confocal microscopy a point-spread function 112 nm wide results (λ = 488 nm). Radially polarized annular illumination of a solid-immersion lens can yield a focal spot smaller than 100 nm for λ = 488 nm. Use of radially polarized illumination with pupil masks is diskussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Airy, “The diffraction of an annular aperture,” Philos. Mag. Ser. 3 18, 1–10 (1841).
  2. Lord. Rayleigh, “On the diffraction of object glasses,” Mon. Notes R. Astron. Soc. 33, 59–63 (1872).
  3. G. C. Steward, “IV Aberration diffraction effects,” Philos. Trans. R. Soc. London Ser. A 225, 131–198 (1926).
    [CrossRef]
  4. W. H. Steel, “Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques,” Revue d’Optique 32, 4, 143, 269 (1953).
  5. E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
    [CrossRef]
  6. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960).
    [CrossRef]
  7. J. T. McCrickerd, “Coherent processing and depth of focus of annular aperture imagery,” Appl. Opt. 10, 2226–2230 (1971).
    [CrossRef] [PubMed]
  8. E. L. O’Neill, “Transfer function for an annular aperture,” J. Opt. Soc. Am. 46, 285–288 (1956).
    [CrossRef]
  9. H. F. A. Tschunko, “Imaging performance of annular apertures,” Appl. Opt. 13, 1820–1823 (1974).
    [CrossRef] [PubMed]
  10. H. F. A. Tschunko, “Annular apertures with low and high obstruction,” Appl. Opt. 20, 168–169 (1981).
    [CrossRef] [PubMed]
  11. T. S. McKechnie, “The effect of condenser obstruction on the two point resolution of a microscope,” Opt. Acta 19, 729–737 (1972).
    [CrossRef]
  12. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [CrossRef]
  13. J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. London Ser. A 248, 93–106 (1958).
    [CrossRef]
  14. C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik 48, 329–334 (1977).
  15. C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
    [CrossRef]
  16. Z. S. Hegedus, “Annular pupil arrays—application to confocal scanning,” Opt. Acta 32, 815–826 (1985).
    [CrossRef]
  17. Z. Hegedus, V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3, 1892–1896 (1986).
    [CrossRef]
  18. I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982).
    [CrossRef]
  19. C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998).
    [CrossRef]
  20. M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).
  21. G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti. Fond. Giorgio Ronchi 7, 366–372 (1952).
  22. G. Toraldo di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
    [CrossRef]
  23. C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London A379, 145–158 (1982).
  24. X. S. Gan, C. J. R. Sheppard, “Imaging in a confocal microscope with one circular and one annular lens,” Opt. Commun. 103, 254–264 (1993).
    [CrossRef]
  25. G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
    [CrossRef]
  26. A. Yoshida, T. Asakura, “Electromagnetic field in the focal plane of a coherent beam from a wide-angular annular-aperture system,” Optik 40, 322–331 (1974).
  27. C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves, Opt. Acoust. 2, 163–166 (1978).
    [CrossRef]
  28. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
    [CrossRef]
  29. R. Arimoto, S. Kawata, “Laser-scan fluorescence microscope with annular excitation,” Optik 86, 7–10 (1990).
  30. R. K. Luneberg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1964).
  31. C. J. R. Sheppard, K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41, 1495–1505 (1994).
    [CrossRef]
  32. V. Dhayalan, J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations,” Pure Appl. Opt. 6, 347–372 (1997).
    [CrossRef]
  33. C. J. R. Sheppard, P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).
  34. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef]
  35. J. J. Wynne, “Generation of rotationally symmetric TE01 and TM01 modes from a wavelength tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
    [CrossRef]
  36. Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
    [CrossRef]
  37. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
    [CrossRef]
  38. L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6, 22–23 (1981).
    [CrossRef] [PubMed]
  39. L. W. Davis, G. Patsakos, “Comment on “Representation of vector electromagnetic beams”,” Phys. Rev. A 26, 3702–3703 (1982).
    [CrossRef]
  40. R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
    [CrossRef] [PubMed]
  41. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1996).
    [CrossRef] [PubMed]
  42. P. L. Greene, D. G. Hall, “Diffraction characteristics of the azimuthal Bessel-gauss beam,” J. Opt. Soc. Am. A 13, 962–966 (1996).
    [CrossRef]
  43. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. America A 15, 2705–2711 (1998).
    [CrossRef]
  44. S. R. Seshadri, “Electromagnetic Gaussian beam,” J. Opt. Soc. Am. A 15, 2712–2719 (1998).
    [CrossRef]
  45. C. J. R. Sheppard, S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999).
    [CrossRef]
  46. Z. Bouchal, M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
    [CrossRef]
  47. S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  48. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  49. S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
    [CrossRef]
  50. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  51. L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
    [CrossRef] [PubMed]
  52. X. S. Xie, R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
    [CrossRef] [PubMed]
  53. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
    [CrossRef]
  54. G. Weber, “Polarized fluorescence,” in Fluorescence Techniques in Cell Biology, A. A. T. a. M. Sernatz, ed. (Springer-Verlag, Berlin, 1973).
    [CrossRef]
  55. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
    [CrossRef] [PubMed]
  56. C. J. R. Sheppard, P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205–218 (1997).
    [CrossRef]
  57. P. Török, C. J. R. Sheppard, “The role of pinhole size in high-aperture two- and three-photon microscopy,” in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed. (Wiley-Liss, New York, 2002), pp. 127–152.
  58. D. P. Biss, T. G. Brown, “Polarization-vortex-driven second harmonic generation,” Opt. Lett. 28, 923–925 (2003).
    [CrossRef] [PubMed]
  59. C. S. Izzard, L. R. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflection study with evaluation of the technique,” J. Cell Sci. 21, 129–155 (1976).
    [PubMed]
  60. D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
    [CrossRef] [PubMed]
  61. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  62. S. Kawata, “Grating-probe designing for evanescent-field microscope,” in Proceedings of the OITDA Second International Forum on Optical Scanning Microscopy, S. Minami, ed. (Optoelectronic Industry and Technology Development Association, Tokyo, Japan, 1992), p. 73–77.
  63. S. Ruschin, A. Leizer, “Evanescent Bessel beam,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
    [CrossRef]
  64. J. M. Guerra, “Photon tunneling microscope,” Appl. Opt. 29, 3741–3752 (1990).
    [CrossRef] [PubMed]
  65. P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
    [CrossRef]
  66. J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).
  67. C. J. R. Sheppard, Z. S. Hegedus, “Axial behavior of pupil plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988).
    [CrossRef]

2003

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

D. P. Biss, T. G. Brown, “Polarization-vortex-driven second harmonic generation,” Opt. Lett. 28, 923–925 (2003).
[CrossRef] [PubMed]

2001

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

2000

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1999

1998

A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. America A 15, 2705–2711 (1998).
[CrossRef]

S. R. Seshadri, “Electromagnetic Gaussian beam,” J. Opt. Soc. Am. A 15, 2712–2719 (1998).
[CrossRef]

S. Ruschin, A. Leizer, “Evanescent Bessel beam,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[CrossRef]

C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998).
[CrossRef]

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

1997

V. Dhayalan, J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations,” Pure Appl. Opt. 6, 347–372 (1997).
[CrossRef]

C. J. R. Sheppard, P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).

C. J. R. Sheppard, P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205–218 (1997).
[CrossRef]

1996

1995

Z. Bouchal, M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
[CrossRef]

1994

X. S. Xie, R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef] [PubMed]

R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
[CrossRef] [PubMed]

C. J. R. Sheppard, K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41, 1495–1505 (1994).
[CrossRef]

1993

X. S. Gan, C. J. R. Sheppard, “Imaging in a confocal microscope with one circular and one annular lens,” Opt. Commun. 103, 254–264 (1993).
[CrossRef]

1992

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

1991

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

1990

R. Arimoto, S. Kawata, “Laser-scan fluorescence microscope with annular excitation,” Optik 86, 7–10 (1990).

L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef] [PubMed]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

J. M. Guerra, “Photon tunneling microscope,” Appl. Opt. 29, 3741–3752 (1990).
[CrossRef] [PubMed]

1988

1986

1985

Z. S. Hegedus, “Annular pupil arrays—application to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

1983

D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
[CrossRef] [PubMed]

1982

L. W. Davis, G. Patsakos, “Comment on “Representation of vector electromagnetic beams”,” Phys. Rev. A 26, 3702–3703 (1982).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London A379, 145–158 (1982).

I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982).
[CrossRef]

1981

1979

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

1978

C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves, Opt. Acoust. 2, 163–166 (1978).
[CrossRef]

1977

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik 48, 329–334 (1977).

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

1976

C. S. Izzard, L. R. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflection study with evaluation of the technique,” J. Cell Sci. 21, 129–155 (1976).
[PubMed]

1974

H. F. A. Tschunko, “Imaging performance of annular apertures,” Appl. Opt. 13, 1820–1823 (1974).
[CrossRef] [PubMed]

J. J. Wynne, “Generation of rotationally symmetric TE01 and TM01 modes from a wavelength tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

A. Yoshida, T. Asakura, “Electromagnetic field in the focal plane of a coherent beam from a wide-angular annular-aperture system,” Optik 40, 322–331 (1974).

1972

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

T. S. McKechnie, “The effect of condenser obstruction on the two point resolution of a microscope,” Opt. Acta 19, 729–737 (1972).
[CrossRef]

1971

1966

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

1960

1959

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[CrossRef]

1958

J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. London Ser. A 248, 93–106 (1958).
[CrossRef]

1956

1954

1953

W. H. Steel, “Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques,” Revue d’Optique 32, 4, 143, 269 (1953).

E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

1952

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti. Fond. Giorgio Ronchi 7, 366–372 (1952).

G. Toraldo di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

1926

G. C. Steward, “IV Aberration diffraction effects,” Philos. Trans. R. Soc. London Ser. A 225, 131–198 (1926).
[CrossRef]

1872

Lord. Rayleigh, “On the diffraction of object glasses,” Mon. Notes R. Astron. Soc. 33, 59–63 (1872).

1841

G. B. Airy, “The diffraction of an annular aperture,” Philos. Mag. Ser. 3 18, 1–10 (1841).

Airy, G. B.

G. B. Airy, “The diffraction of an annular aperture,” Philos. Mag. Ser. 3 18, 1–10 (1841).

Anderson, E.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

Andrés, P.

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

Arimoto, R.

R. Arimoto, S. Kawata, “Laser-scan fluorescence microscope with annular excitation,” Optik 86, 7–10 (1990).

Asakura, T.

A. Yoshida, T. Asakura, “Electromagnetic field in the focal plane of a coherent beam from a wide-angular annular-aperture system,” Optik 40, 322–331 (1974).

Axelrod, D.

D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
[CrossRef] [PubMed]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

Barends, P.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Biss, D. P.

Blom, P.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Bouchal, Z.

Z. Bouchal, M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
[CrossRef]

Brakenhoff, G. J.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Brown, T. G.

Burghardt, T.

D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
[CrossRef] [PubMed]

Calvert, G.

Campos, J.

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

Choudhury, A.

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

Cicchitelli, L.

L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef] [PubMed]

Cox, I. J.

Davis, L. W.

L. W. Davis, G. Patsakos, “Comment on “Representation of vector electromagnetic beams”,” Phys. Rev. A 26, 3702–3703 (1982).
[CrossRef]

L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6, 22–23 (1981).
[CrossRef] [PubMed]

Dhayalan, V.

V. Dhayalan, J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations,” Pure Appl. Opt. 6, 347–372 (1997).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Dunn, R. C.

X. S. Xie, R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef] [PubMed]

Dyson, J.

J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. London Ser. A 248, 93–106 (1958).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Erdogan, T.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

Escalera, J. C.

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

Gan, X. S.

X. S. Gan, C. J. R. Sheppard, “Imaging in a confocal microscope with one circular and one annular lens,” Opt. Commun. 103, 254–264 (1993).
[CrossRef]

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Greene, P. L.

Guerra, J. M.

Hall, D. G.

Hegedus, Z.

Hegedus, Z. S.

C. J. R. Sheppard, Z. S. Hegedus, “Axial behavior of pupil plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988).
[CrossRef]

Z. S. Hegedus, “Annular pupil arrays—application to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

Hora, H.

L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef] [PubMed]

Izzard, C. S.

C. S. Izzard, L. R. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflection study with evaluation of the technique,” J. Cell Sci. 21, 129–155 (1976).
[PubMed]

Jordan, R. H.

Kawata, S.

R. Arimoto, S. Kawata, “Laser-scan fluorescence microscope with annular excitation,” Optik 86, 7–10 (1990).

S. Kawata, “Grating-probe designing for evanescent-field microscope,” in Proceedings of the OITDA Second International Forum on Optical Scanning Microscopy, S. Minami, ed. (Optoelectronic Industry and Technology Development Association, Tokyo, Japan, 1992), p. 73–77.

King, O.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

Kino, G. S.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Larkin, K. G.

C. J. R. Sheppard, K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41, 1495–1505 (1994).
[CrossRef]

Leizer, A.

Leuchs, G.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Li, T.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Linfoot, E. H.

E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Lochner, L. R.

C. S. Izzard, L. R. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflection study with evaluation of the technique,” J. Cell Sci. 21, 129–155 (1976).
[PubMed]

Luneberg, R. K.

R. K. Luneberg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1964).

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Martinez-Corral, M.

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

Matsumura, K.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

McCrickerd, J. T.

McKechnie, T. S.

T. S. McKechnie, “The effect of condenser obstruction on the two point resolution of a microscope,” Opt. Acta 19, 729–737 (1972).
[CrossRef]

McLeod, J. H.

Mishra, S. R.

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

Mushiake, Y.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

O’Neill, E. L.

Olivik, M.

Z. Bouchal, M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
[CrossRef]

Patsakos, G.

L. W. Davis, G. Patsakos, “Comment on “Representation of vector electromagnetic beams”,” Phys. Rev. A 26, 3702–3703 (1982).
[CrossRef]

L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6, 22–23 (1981).
[CrossRef] [PubMed]

Postle, R.

L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Rayleigh, Lord.

Lord. Rayleigh, “On the diffraction of object glasses,” Mon. Notes R. Astron. Soc. 33, 59–63 (1872).

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[CrossRef]

Rooks, M. J.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

Ruschin, S.

Saghafi, S.

Sarafis, V.

Seshadri, S. R.

Sheppard, C. J. R.

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

C. J. R. Sheppard, S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999).
[CrossRef]

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998).
[CrossRef]

C. J. R. Sheppard, P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).

C. J. R. Sheppard, P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205–218 (1997).
[CrossRef]

P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
[CrossRef]

C. J. R. Sheppard, K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41, 1495–1505 (1994).
[CrossRef]

X. S. Gan, C. J. R. Sheppard, “Imaging in a confocal microscope with one circular and one annular lens,” Opt. Commun. 103, 254–264 (1993).
[CrossRef]

C. J. R. Sheppard, Z. S. Hegedus, “Axial behavior of pupil plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London A379, 145–158 (1982).

I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982).
[CrossRef]

C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves, Opt. Acoust. 2, 163–166 (1978).
[CrossRef]

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik 48, 329–334 (1977).

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

P. Török, C. J. R. Sheppard, “The role of pinhole size in high-aperture two- and three-photon microscopy,” in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed. (Wiley-Liss, New York, 2002), pp. 127–152.

Stamnes, J.

V. Dhayalan, J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations,” Pure Appl. Opt. 6, 347–372 (1997).
[CrossRef]

Steel, W. H.

W. H. Steel, “Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques,” Revue d’Optique 32, 4, 143, 269 (1953).

Steward, G. C.

G. C. Steward, “IV Aberration diffraction effects,” Philos. Trans. R. Soc. London Ser. A 225, 131–198 (1926).
[CrossRef]

Thompson, T.

D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
[CrossRef] [PubMed]

Toraldo di Francia, G.

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti. Fond. Giorgio Ronchi 7, 366–372 (1952).

G. Toraldo di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

Török, P.

C. J. R. Sheppard, P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).

C. J. R. Sheppard, P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205–218 (1997).
[CrossRef]

P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
[CrossRef]

P. Török, C. J. R. Sheppard, “The role of pinhole size in high-aperture two- and three-photon microscopy,” in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed. (Wiley-Liss, New York, 2002), pp. 127–152.

Tovar, A. A.

A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. America A 15, 2705–2711 (1998).
[CrossRef]

Tschunko, H. F. A.

Varga, P.

P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
[CrossRef]

Weber, G.

G. Weber, “Polarized fluorescence,” in Fluorescence Techniques in Cell Biology, A. A. T. a. M. Sernatz, ed. (Springer-Verlag, Berlin, 1973).
[CrossRef]

Welford, W. T.

Wheatland, M.

Wicks, G. W.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

Wilson, T.

I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London A379, 145–158 (1982).

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[CrossRef]

E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Wynne, J. J.

J. J. Wynne, “Generation of rotationally symmetric TE01 and TM01 modes from a wavelength tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

Xie, X. S.

X. S. Xie, R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef] [PubMed]

Yoshida, A.

A. Yoshida, T. Asakura, “Electromagnetic field in the focal plane of a coherent beam from a wide-angular annular-aperture system,” Optik 40, 322–331 (1974).

Youngworth, K. S.

Yzuel, M. J.

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

Zapata-Rodriguez, C. J.

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

Appl. Opt.

Appl. Phys. B: Lasers Opt.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B: Lasers Opt. 72, 109–113 (2001).
[CrossRef]

Appl. Phys. Lett.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, M. J. Rooks, “Circularly-symmetric operation of a concentric-circle-grating, surface emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[CrossRef]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Atti. Fond. Giorgio Ronchi

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti. Fond. Giorgio Ronchi 7, 366–372 (1952).

Bioimaging

C. J. R. Sheppard, P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205–218 (1997).
[CrossRef]

Biophys. J.

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

IEE J. Microwaves, Opt. Acoust.

C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves, Opt. Acoust. 2, 163–166 (1978).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Wynne, “Generation of rotationally symmetric TE01 and TM01 modes from a wavelength tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974).
[CrossRef]

J. Cell Sci.

C. S. Izzard, L. R. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflection study with evaluation of the technique,” J. Cell Sci. 21, 129–155 (1976).
[PubMed]

J. Microsc.

D. Axelrod, T. Thompson, T. Burghardt, “Total internal reflection fluorescence microscopy,” J. Microsc. 129, 19–28 (1983).
[CrossRef] [PubMed]

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

J. Mod. Opt.

C. J. R. Sheppard, K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41, 1495–1505 (1994).
[CrossRef]

P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
[CrossRef]

J. Campos, J. C. Escalera, C. J. R. Sheppard, M. J. Yzuel, “Axially invariant pupil filters,” J. Mod. Opt. 47, 57–68 (2000).

Z. Bouchal, M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. America A

A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. America A 15, 2705–2711 (1998).
[CrossRef]

Mon. Notes R. Astron. Soc.

Lord. Rayleigh, “On the diffraction of object glasses,” Mon. Notes R. Astron. Soc. 33, 59–63 (1872).

Nuovo Cimento Suppl.

G. Toraldo di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

Opt. Acta

T. S. McKechnie, “The effect of condenser obstruction on the two point resolution of a microscope,” Opt. Acta 19, 729–737 (1972).
[CrossRef]

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

Z. S. Hegedus, “Annular pupil arrays—application to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

Opt. Commun.

X. S. Gan, C. J. R. Sheppard, “Imaging in a confocal microscope with one circular and one annular lens,” Opt. Commun. 103, 254–264 (1993).
[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

R. Arimoto, S. Kawata, “Laser-scan fluorescence microscope with annular excitation,” Optik 86, 7–10 (1990).

A. Yoshida, T. Asakura, “Electromagnetic field in the focal plane of a coherent beam from a wide-angular annular-aperture system,” Optik 40, 322–331 (1974).

C. J. R. Sheppard, P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).

M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik 107, 145–148 (1998).

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik 48, 329–334 (1977).

Philos. Mag. Ser. 3

G. B. Airy, “The diffraction of an annular aperture,” Philos. Mag. Ser. 3 18, 1–10 (1841).

Philos. Trans. R. Soc. London Ser. A

G. C. Steward, “IV Aberration diffraction effects,” Philos. Trans. R. Soc. London Ser. A 225, 131–198 (1926).
[CrossRef]

Phys. Rev. A

L. W. Davis, G. Patsakos, “Comment on “Representation of vector electromagnetic beams”,” Phys. Rev. A 26, 3702–3703 (1982).
[CrossRef]

L. Cicchitelli, H. Hora, R. Postle, “Longitudinal components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. IEEE

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam modes by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972).
[CrossRef]

Proc. Phys. Soc. B

E. H. Linfoot, E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Proc. R. Soc. London

C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London A379, 145–158 (1982).

Proc. R. Soc. London A

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[CrossRef]

Proc. R. Soc. London Ser. A

J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. London Ser. A 248, 93–106 (1958).
[CrossRef]

Pure Appl. Opt.

V. Dhayalan, J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations,” Pure Appl. Opt. 6, 347–372 (1997).
[CrossRef]

Revue d’Optique

W. H. Steel, “Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques,” Revue d’Optique 32, 4, 143, 269 (1953).

Science

X. S. Xie, R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef] [PubMed]

Other

G. Weber, “Polarized fluorescence,” in Fluorescence Techniques in Cell Biology, A. A. T. a. M. Sernatz, ed. (Springer-Verlag, Berlin, 1973).
[CrossRef]

P. Török, C. J. R. Sheppard, “The role of pinhole size in high-aperture two- and three-photon microscopy,” in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed. (Wiley-Liss, New York, 2002), pp. 127–152.

S. Kawata, “Grating-probe designing for evanescent-field microscope,” in Proceedings of the OITDA Second International Forum on Optical Scanning Microscopy, S. Minami, ed. (Optoelectronic Industry and Technology Development Association, Tokyo, Japan, 1992), p. 73–77.

R. K. Luneberg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electric energy density in the focal region for an NA of 1.4 with a narrow annular pupil, for circularly polarized and radially polarized illumination. For the circularly polarized annulus, the central lobe is slightly narrower (in normalized coordinates) than for the paraxial case for an unobstructed aperture, and the sidelobe level is much higher. For the radially polarized (transverse-magnetic) annulus, the response is quite close to that of the paraxial annulus except that the minima are no longer zeros.

Fig. 2
Fig. 2

Intensity in the focal plane along the x and y axes for plane-polarized illumination and for circularly polarized illumination for (a) a circular pupil and (b) a narrow annular pupil. Along the y axis, the annulus gives a much sharper response, but along the x axis the response is broad because of the longitudinally polarized field component. The NA is 1.4.

Fig. 3
Fig. 3

Intensity of the confocal image of a point object for an NA of 1.4. The detection pupil is an unobstructed circular pupil. The illumination is a circularly polarized circular pupil, a circularly polarized narrow annulus, or a radially polarized annulus.

Fig. 4
Fig. 4

Intensity in the focal spot for a solid-immersion system with diamond-water or silicon-air illuminated with radially polarized light with a cone of semiangle 68°, corresponding to an NA in air of 0.927. The curves are plotted against the optical coordinate ν, defined for the high-index medium.

Tables (2)

Tables Icon

Table 1 FWHM of the Point-Spread Function for Different Optical Systems for an NA

Tables Icon

Table 2 NA and FWHM for a SILa with Radially Polarized Annular Illumination

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Iν=J02ν,
ν=krn sin α
Iν=2J1νν2.
Iν, ϕ=J02ν+2 tan2α/2J12ν+tan4α/2J22ν+2 cos2ϕtan2α/2×J12ν+J0νJ2ν.
Iν=J02ν+2 tan2α/2J12ν+tan4α/2J22ν.
Iν=J02ν+cot2 αJ12ν.
Iν=J02ν+1-n22 cosec2 αn12J12ν.

Metrics