Abstract

The nonlinearity characteristics of photoconductive and photovoltaic HgCdTe detectors were experimentally investigated in the infrared wavelength region by use of the National Physical Laboratory detector linearity measurement facility. The nonlinearity of photoconductive HgCdTe detectors was shown to be a function of irradiance rather than the total radiant power incident on the detector. Photoconductive HgCdTe detectors supplied by different vendors were shown to have similar linearity characteristics for wavelengths around 10 μm. However, the nonlinearity of response of a photovoltaic HgCdTe detector was shown to be significantly lower than the corresponding value for photoconductive HgCdTe detectors at the same wavelength.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Mielenz, K. L. Eckerle, “Spectrophotometer linearity testing using the double aperture method,” Appl. Opt. 11, 2294–2303 (1972).
    [CrossRef] [PubMed]
  2. F. J. J. Clarke, “High accuracy spectrophotometry at National Physical Laboratory,” J. Res. Nat. Bur. Stand. 76A, 375–403 (1972).
    [CrossRef]
  3. C. L. Sanders, “Accurate measurements of and corrections for nonlinearities in radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
    [CrossRef]
  4. H. J. Jung, “Spectral nonlinearity characteristics of low noise silicon detectors and their application to accurate measurements of radiation flux ratios,” Metrologia 15, 173–181 (1979).
    [CrossRef]
  5. E. Theocharous, J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, Peter R. Griffiths, eds. (Wiley, Chichester, U.K., 2002), pp. 349–367.
  6. D. B. Chase, “Nonlinear detector response in FT-IR,” Appl. Spectrosc. 38, 491–494 (1984).
    [CrossRef]
  7. C. L. Wyatt, “Radiometric linearity calibration,” in Infrared Technology XI, R. A. Mollicone, I. J. Spiro, eds., Proc. SPIE572, 68–73 (1985).
    [CrossRef]
  8. M. S. Alam, J. Predina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3267–3271 (2000).
  9. J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).
  10. R. L. Richardson, H. Yang, P. R. Griffiths, “Evaluation of a correction for photometric errors in FT-IR spectrometry introduced by a nonlinear detector response,” Appl. Spectrosc. 52, 565–571 (1989).
    [CrossRef]
  11. L. Palchetti, G. Bianchini, U. Cortesi, E. Pascale, C. Lee, “Assessment of detector nonlinearity in Fourier transform spectroscopy,” Appl. Spectrosc. 56, 271–274 (2002).
    [CrossRef]
  12. Z. M. Zhang, C. J. Zhu, L. M. Hansen, “Absolute detector calibration applied to non-linearity error correction in FT-IR measurements,” Appl. Spectrosc. 51, 576–579 (1997).
    [CrossRef]
  13. E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
    [CrossRef]
  14. EGG Optoelectronics, Infrared Detectors, (EGG Judson, Montgomeryville, Pa., 1995), pp. 20–21.
  15. F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
    [CrossRef]
  16. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
    [CrossRef]
  17. E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
    [CrossRef]
  18. E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
    [CrossRef]
  19. E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
    [CrossRef]

2002 (1)

2000 (1)

M. S. Alam, J. Predina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3267–3271 (2000).

1998 (2)

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

1997 (1)

1993 (2)

F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

1989 (1)

1984 (1)

1979 (1)

H. J. Jung, “Spectral nonlinearity characteristics of low noise silicon detectors and their application to accurate measurements of radiation flux ratios,” Metrologia 15, 173–181 (1979).
[CrossRef]

1974 (1)

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

1972 (3)

F. J. J. Clarke, “High accuracy spectrophotometry at National Physical Laboratory,” J. Res. Nat. Bur. Stand. 76A, 375–403 (1972).
[CrossRef]

C. L. Sanders, “Accurate measurements of and corrections for nonlinearities in radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

K. D. Mielenz, K. L. Eckerle, “Spectrophotometer linearity testing using the double aperture method,” Appl. Opt. 11, 2294–2303 (1972).
[CrossRef] [PubMed]

Alam, M. S.

M. S. Alam, J. Predina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3267–3271 (2000).

Allen, R.

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

Bartoli, J.

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

Bianchini, G.

Birch, J. R.

E. Theocharous, J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, Peter R. Griffiths, eds. (Wiley, Chichester, U.K., 2002), pp. 349–367.

Boivin, L. P.

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

Chase, D. B.

Clarke, F. J. J.

F. J. J. Clarke, “High accuracy spectrophotometry at National Physical Laboratory,” J. Res. Nat. Bur. Stand. 76A, 375–403 (1972).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
[CrossRef]

Cortesi, U.

Eckerle, K. L.

Esterowitz, L.

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

Fischer, J.

F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

Fox, N. P.

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Griffiths, P. R.

Hansen, L. M.

Haycocks, P. R.

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

Jung, H. J.

H. J. Jung, “Spectral nonlinearity characteristics of low noise silicon detectors and their application to accurate measurements of radiation flux ratios,” Metrologia 15, 173–181 (1979).
[CrossRef]

Kruer, M.

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

Lee, C.

Lei, F.

F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

Mekhontsev, S. N.

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

Mielenz, K. D.

Morozova, S. P.

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

Palchetti, L.

Pascale, E.

Predina, J.

M. S. Alam, J. Predina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3267–3271 (2000).

Prior, T. R.

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Richardson, R. L.

Rogers, L. J.

E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
[CrossRef]

Sanders, C. L.

C. L. Sanders, “Accurate measurements of and corrections for nonlinearities in radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

Sapritsky, V. I.

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

Theocharous, E.

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

E. Theocharous, J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, Peter R. Griffiths, eds. (Wiley, Chichester, U.K., 2002), pp. 349–367.

Wyatt, C. L.

C. L. Wyatt, “Radiometric linearity calibration,” in Infrared Technology XI, R. A. Mollicone, I. J. Spiro, eds., Proc. SPIE572, 68–73 (1985).
[CrossRef]

Yang, H.

Zhang, Z. M.

Zhu, C. J.

Appl. Opt. (1)

Appl. Phys. (1)

J. Bartoli, R. Allen, L. Esterowitz, M. Kruer, “Angular-limited carrier lifetimes in HgCdTe at high excess carrier concentrations,” Appl. Phys. 45, 2150–2154 (1974).

Appl. Spectrosc. (4)

J. Res. Nat. Bur. Stand. (2)

F. J. J. Clarke, “High accuracy spectrophotometry at National Physical Laboratory,” J. Res. Nat. Bur. Stand. 76A, 375–403 (1972).
[CrossRef]

C. L. Sanders, “Accurate measurements of and corrections for nonlinearities in radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

Metrologia (5)

H. J. Jung, “Spectral nonlinearity characteristics of low noise silicon detectors and their application to accurate measurements of radiation flux ratios,” Metrologia 15, 173–181 (1979).
[CrossRef]

F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, N. P. Fox, “High accuracy, infrared spectral responsivity scale,” Metrologia 35, 543–548 (1998).
[CrossRef]

E. Theocharous, N. P. Fox, V. I. Sapritsky, S. N. Mekhontsev, S. P. Morozova, “Absolute measurements of blackbody emitted radiance,” Metrologia 35, 549–554 (1998).
[CrossRef]

Opt. Eng. (1)

M. S. Alam, J. Predina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3267–3271 (2000).

Other (5)

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rogers, N. P. Fox, “Latest measurement techniques at NPL for the characterization of infrared detectors and materials,” in Materials for Infrared Detectors III, R. E. Longshore, S. Sivananthan, eds., Proc. SPIE5209, 228–239 (2003).
[CrossRef]

EGG Optoelectronics, Infrared Detectors, (EGG Judson, Montgomeryville, Pa., 1995), pp. 20–21.

E. Theocharous, J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, Peter R. Griffiths, eds. (Wiley, Chichester, U.K., 2002), pp. 349–367.

C. L. Wyatt, “Radiometric linearity calibration,” in Infrared Technology XI, R. A. Mollicone, I. J. Spiro, eds., Proc. SPIE572, 68–73 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the layout of the NPL linearity measurement facility.

Fig. 2
Fig. 2

Linearity characteristics of the CMT01 detector/amplifier combination at 10.3 μm as a function of radiant power for different sizes of spot on the detector. ○, d = 1.0 mm; △, d = 1.4 mm; ▲, d = 1.8 mm; ●, d = 2.8 mm. Error bars represent the standard deviation of each linearity measurement.

Fig. 3
Fig. 3

Linearity characteristics of the CMT01 detector/amplifier combination at 10.3 μm as a function of irradiance for different sizes of spot on the detector. ○, d = 1.0 mm; △, d = 1.4 mm; ▲, d = 1.8 mm; ●, d = 2.8 mm.

Fig. 4
Fig. 4

Comparison of the linearity characteristics of CMT01 detector/amplifier combination as a function of irradiance at 10.3 μm (○) and at 3.8 μm (●).

Fig. 5
Fig. 5

Comparison of the linearity characteristics of CMT01 detector/amplifier combination as a function of photon irradiance at 10.3 μm (○) and at 3.8 μm (●).

Fig. 6
Fig. 6

Spatial uniformity of response of the CMT01 detector/amplifier combination measured at 10.3 μm generated by scanning a 0.4-mm-diameter spot over the active area of the detector.

Fig. 7
Fig. 7

Linearity characteristics of the CMT01 detector/amplifier combination at 10.3 μm measured at five different locations on the active area of the detector indicated by A, B, C, D, and E in Fig. 6.

Fig. 8
Fig. 8

Linearity characteristics of the Infrared Associates (Stuart, Florida) G9327 detector/amplifier combination measured at 10.3 μm.

Fig. 9
Fig. 9

Linearity characteristics of the Infrared Associates G9326 detector/amplifier combination measured at 10.3 μm.

Fig. 10
Fig. 10

Linearity characteristics of the CMT02 HgCdTe detector/amplifier combination supplied by Judson (Montgomeryville, Pa.) measured at 10.3 μm.

Fig. 11
Fig. 11

Linearity characteristics of the 2-mm-diameter PV HgCdTe detector supplied by Infrared Associates measured at 10.3 μm.

Fig. 12
Fig. 12

Linearity characteristics of the Hamamatsu 1337 silicon detector/transimpedance amplifier at 900 nm measured in the same configuration as the HgCdTe detectors (including the lock-in amplifier).

Tables (1)

Tables Icon

Table 1 HgCdTe Detectors Studied and Their Characteristics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LVA+B=VA+BVA+VB,
Lx=1-c1x-c2x2,
Ep=λEehc,

Metrics