Abstract

A common problem during study of, for instance, tensile tests with interferometers is that the sample moves too much so that the speckles decorrelate and no phase information is obtained. Two ways to overcome this problem are compared: a combination of speckle interferometry and speckle correlation and a method in which the reference image is updated during the experiment. The comparison shows that both techniques can be used to measure the deformation of an object even if it is exposed to rigid body motions. Both techniques are applied to measurements of microscale deformation fields of an adhesive joint in a carbon-fiber epoxy composite.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gren, S. Schedin, “Phase evaluation and speckle averaging in pulsed television holography,” Appl. Opt. 36, 3941–3947 (1997).
    [CrossRef] [PubMed]
  2. P. Gren, “Four-pulse interferometric recordings of transient events by pulsed TV holography,” Opt. Lasers Eng. 40, 517–528 (2003).
    [CrossRef]
  3. J. M. Huntley, G. H. Kaufmann, D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999).
    [CrossRef]
  4. A. Svanbro, J. M. Huntley, A. Davila, “Optimal re-referencing rate for in-plane dynamic speckle interferometry,” Appl. Opt. 42, 251–258 (2003).
    [CrossRef] [PubMed]
  5. A. Andersson, A. Runnemalm, M. Sjödahl, “Digital speckle-pattern interferometry: fringe retrieval for large in-plane deformations with digital speckle photography,” Appl. Opt. 38, 5408–5412 (1999).
    [CrossRef]
  6. M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
    [CrossRef] [PubMed]
  7. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966).
    [CrossRef]
  8. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, U.K., 1993), pp. 94–140.
  9. M. Sjödahl, L. R. Benckert, “Systematic and random errors in electronic speckle photography,” Appl. Opt. 33, 7461–7471 (1994).
    [CrossRef] [PubMed]
  10. M. Sjödahl, “Digital speckle photography,” in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, West Sussex, U.K., 2001), pp. 289–336.

2003 (2)

P. Gren, “Four-pulse interferometric recordings of transient events by pulsed TV holography,” Opt. Lasers Eng. 40, 517–528 (2003).
[CrossRef]

A. Svanbro, J. M. Huntley, A. Davila, “Optimal re-referencing rate for in-plane dynamic speckle interferometry,” Appl. Opt. 42, 251–258 (2003).
[CrossRef] [PubMed]

1999 (2)

1997 (1)

1994 (2)

1966 (1)

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966).
[CrossRef]

Andersson, A.

Benckert, L. R.

Carré, P.

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966).
[CrossRef]

Creath, K.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, U.K., 1993), pp. 94–140.

Davila, A.

Gren, P.

P. Gren, “Four-pulse interferometric recordings of transient events by pulsed TV holography,” Opt. Lasers Eng. 40, 517–528 (2003).
[CrossRef]

P. Gren, S. Schedin, “Phase evaluation and speckle averaging in pulsed television holography,” Appl. Opt. 36, 3941–3947 (1997).
[CrossRef] [PubMed]

Huntley, J. M.

Kaufmann, G. H.

Kerr, D.

Runnemalm, A.

Schedin, S.

Sjödahl, M.

Svanbro, A.

Appl. Opt. (6)

Metrologia (1)

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966).
[CrossRef]

Opt. Lasers Eng. (1)

P. Gren, “Four-pulse interferometric recordings of transient events by pulsed TV holography,” Opt. Lasers Eng. 40, 517–528 (2003).
[CrossRef]

Other (2)

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, U.K., 1993), pp. 94–140.

M. Sjödahl, “Digital speckle photography,” in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, West Sussex, U.K., 2001), pp. 289–336.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic sketch of the optical in-plane measuring setup. HWP, half wave plate; PBS, polarizing beam splitter; P, Pockels cell; OF, optical fiber; BC, beam collimator; D, high voltage driver; G, function generator; F, frame store; M, mirror.

Fig. 2
Fig. 2

Mean phase value versus image-plane displacement of a translated aluminum plate for the two measuring techniques.

Fig. 3
Fig. 3

Theoretical and experimental systematic error in the combined SI/SC technique due to undersampling.

Fig. 4
Fig. 4

Standard deviations of the aluminum plate experiment for the two techniques plus the theoretical deviation for the combined SI/SC technique.

Fig. 5
Fig. 5

Schematic picture of the adhesive composite where the studied area is marked.

Fig. 6
Fig. 6

Unwrapped phase map of the deformation field obtained of the composite for a) the combined SI/SC technique and b) the updating of reference image method. The gray scales give the deformation (u) in micrometers, and the sensitivity direction is along the x axis.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

In=I0+Im cosϕ+nφ n=0, 1, 2, 3,
ϕˆw=tan-1signI1-I2I0-I3+I1-I23I1-3I2-I0+I31/2I1+I2-I0-I3 =tan-1ND.
Δϕw=tan-1Ndef Dref-Ddef NrefDdef Dref+Ndef Nref.
Im,ref=absNref2+Dref21/2,Im,def=absNdef2+Ddef21/2.
ϕˆestx, y=4π/λucorrx, ysin θ,
Δϕux, y=2πm+Δϕwx, y,
m=NINTϕˆest-Δϕw2π,
dt=NINTΔϕwt, 0-Δϕwt-1, 0/2π t=2, 3,, s,
vt=k=2t dk t=2, 3,, s v1=0.
Δϕut, 0=Δϕwt, 0-2πvt t=1, 2,, s.
Δϕut, 0=Δϕut, tκ+k=2κ Δϕutk, tk-1+Δϕut1, 0.
σ=1.2λ 12NA,
s=11.2K21-cπc,

Metrics