Abstract

The design and fabrication procedures for implementing a high-density (16-μm center spacing) single-mode fiber (SMF) array are described. The specific application for this array is a parallel optical coherence tomography system for endoscopic imaging. We obtained fiber elements by etching standard single-mode SMF-28 fibers to a diameter of 14–15 μm. We equalized 1-m lengths of fiber to within 1 mm by using a fiber interferometer setup, and we describe a method for packaging arrays with as many as 100 fibers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12, 367–376 (2004), http://www.opticsexpress.org .
    [CrossRef]
  4. C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Y. Chen, J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
    [CrossRef]
  5. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
    [CrossRef]
  6. J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
    [PubMed]
  7. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).
    [CrossRef]
  8. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef]
  9. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express11, 3598–3604 (2003), http://www.opticsexpress.org .
    [CrossRef]
  10. J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).
  11. R. K. Kostuk, J. Carriere, “Interconnect characteristics of fiber image guides,” Appl. Opt. 40, 2428–2434 (2001).
    [CrossRef]
  12. E. J. Murphy, Integrated Optical Circuits and Components—Design and Applications (Marcel Dekker, New York, 1999).
  13. A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
    [CrossRef] [PubMed]
  14. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  15. A. Dandridge, “Zero path-length difference in fiber-optic interferometers,” J. Lightwave Technol. LT-1, 514–516 (1983).
    [CrossRef]

2003

2001

2000

1999

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

A. M. Rollins, R. Ung-arunyawee, A. Chak, R. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1997

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1983

A. Dandridge, “Zero path-length difference in fiber-optic interferometers,” J. Lightwave Technol. LT-1, 514–516 (1983).
[CrossRef]

Barentsz, J. O.

J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).

Barton, J. K.

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Boppart, S. A.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Bouma, B. E.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Brezinski, M. E.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Carriere, J.

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Dandridge, A.

A. Dandridge, “Zero path-length difference in fiber-optic interferometers,” J. Lightwave Technol. LT-1, 514–516 (1983).
[CrossRef]

de Boer, J. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyle Park, B.

Izatt, J. A.

Kobayashi, K.

Kostuk, R. K.

Kulkarni, M. D.

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Murphy, E. J.

E. J. Murphy, Integrated Optical Circuits and Components—Design and Applications (Marcel Dekker, New York, 1999).

Nelson, J. S.

Pitris, C.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Ruijs, J. H.

J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).

Sato, A.

Saxer, C. E.

Scepanovic, M.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sivak, M. V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, J. G.

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Ung-arunyawee, R.

Welch, A. J.

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Witjes, J. A.

J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).

Wong, R.

Yazdanfar, S.

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Zhao, Y.

Appl. Opt.

Dermatology

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999).
[CrossRef]

Heart

J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

J. Lightwave Technol.

A. Dandridge, “Zero path-length difference in fiber-optic interferometers,” J. Lightwave Technol. LT-1, 514–516 (1983).
[CrossRef]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Uroradiology

J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).

Other

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12, 367–376 (2004), http://www.opticsexpress.org .
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express11, 3598–3604 (2003), http://www.opticsexpress.org .
[CrossRef]

E. J. Murphy, Integrated Optical Circuits and Components—Design and Applications (Marcel Dekker, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic ‖OCT setup. Light from an array of superluminescent LEDs is coupled into a parallel array of fibers. The incident light is split by a 3-dB coupler into a probe and a reference fiber. The probe end illuminates a tissue sample, and the reference end illuminates a scanning mirror. The return signal from each arm is coupled into an output fiber that transfers the combined interference signal to a detector.

Fig. 2
Fig. 2

(a) Straight-etched and (b) taper-etched fiber designs.

Fig. 3
Fig. 3

Cross-talk simulation results in fibers with 16-μm center spacing surrounded by a PMMA-acetone solution. Data are provided for 14-, 14.5-, and 15-μm-diameter fibers.

Fig. 4
Fig. 4

(a) Fiber etching experimental setup and (b) etch rate of the fiber diameter as a function of the time within the BOE solution.

Fig. 5
Fig. 5

Micrographs of (a) a straight-etched SMF-28 fiber with a natural taper that is due to the adhesion of the solution to the surface of the fiber and (b) the small section of the straight-etched SMF-28 fiber and a nonetched SMF-28 fiber for comparison.

Fig. 6
Fig. 6

Experimental setup for obtaining taper-etched fibers.

Fig. 7
Fig. 7

Experimental measurement of cross talk. Fibers are placed in a 1.0-cm-long V-groove substrate. Light emitted from the individual fibers within the array is imaged onto a detector.

Fig. 8
Fig. 8

OCT images obtained for taper-etched fibers of (a) cotton tissue and (b) the index finger of an adult male. The skin was pressed against a microscope slide coated with glycerin to reduce the wave-front distortion introduced by the ridged surface of the skin.

Fig. 9
Fig. 9

Schematic of the fiber interferometer for fiber-length measurements. Each fiber to be equalized is placed into a fiber interferometer. The position of the reference mirror is monitored and adjusted to maximize the interference signal with light passing through the fiber under measurement. DAQ, data acquisition.

Fig. 10
Fig. 10

Results of fiber-length equalization: (a) coarse equalization with fiber lengths adjusted to within 300 μm and (b) fine adjustment of fiber lengths to within 100 μm.

Tables (3)

Tables Icon

Table 1 SMF-28 and Etched SMF-28 Fiber Specifications

Tables Icon

Table 2 Experimental Straight-Etched and Taper-Etched SMF-28 Fiber Characteristics

Tables Icon

Table 3 Differences in Length between Fiber Channels

Metrics