Abstract

Optical coherence tomography (OCT) is a novel technique for noninvasive imaging based on the use of a low-coherence interferometer. Conventionally, obtaining high-resolution images requires the use of high-precision sample and scanning stages and a stage controller for simultaneous measurement of the refractive index and the thickness of an optical sample. However, in this study a novel optical-fiber-type OCT system is developed that does not need both a high-precision scanning stage and a stage controller. Additionally, two signal demodulation processes are described. Compared with that of conventional OCT systems, the current configuration eliminates the high-precision scanning stage and stage controller and is therefore cheaper and less complex. Also, this new technique could be applied to conventional OCTs in biotissue scanning.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2261 (1995).
    [Crossref] [PubMed]
  3. T. Fukano, I. Yamaguchi, “Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope,” Opt. Lett. 21, 1942–1944 (1996).
    [Crossref] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [Crossref]
  5. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [Crossref] [PubMed]
  6. M. D. Duncan, M. Bashkansky, J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express2, 540–545 (1998), http://www.opticsexpress.org .
    [Crossref]
  7. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express6, 136–146 (2000), http://www.opticsexpress.org .
    [Crossref]
  8. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [Crossref] [PubMed]
  9. S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
    [Crossref]
  10. Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
    [Crossref]
  11. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett. 23, 966–968 (1998).
    [Crossref]

1998 (1)

1997 (1)

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
[Crossref]

1996 (3)

1995 (1)

1993 (1)

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[Crossref]

1992 (1)

1991 (1)

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Chang, C. C.

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
[Crossref]

Chang, W.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chinn, S. R.

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[Crossref]

Flotte, T.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Fukano, T.

Golubovic, B.

Gregory, K.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Haruna, M.

Hashimoto, M.

Hee, M. R.

Huang, D.

Huang, H. D.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[Crossref] [PubMed]

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lo, Y. L.

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
[Crossref]

Maruyama, H.

Mitsuyama, T.

Ohmi, M.

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[Crossref] [PubMed]

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Schuman, J. S.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sinson, W. G.

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sirkis, J. S.

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
[Crossref]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Southern, J. F.

Swanson, E. A.

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[Crossref] [PubMed]

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[Crossref]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[Crossref] [PubMed]

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tajiri, H.

Tearney, G. J.

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Yamaguchi, I.

Electron. Lett. (1)

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

J. Lightwave Technol. (1)

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1586 (1997).
[Crossref]

Opt. Lett. (5)

Science (1)

H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

M. D. Duncan, M. Bashkansky, J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express2, 540–545 (1998), http://www.opticsexpress.org .
[Crossref]

B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express6, 136–146 (2000), http://www.opticsexpress.org .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the conventional OCT system: A/D, analog to digital.

Fig. 2
Fig. 2

Flow chart of DSP for a PZT stack modulation.

Fig. 3
Fig. 3

Experimental result of modulation by a PZT stack.

Fig. 4
Fig. 4

Flow chart of DSP for a scanning stage modulation.

Fig. 5
Fig. 5

Experimental result of modulation by a scanning stage.

Fig. 6
Fig. 6

Geometric relationship between two focal points.

Fig. 7
Fig. 7

Novel OCT structure: A/D, analog to digital.

Fig. 8
Fig. 8

Signal processing of scanning profiles.

Fig. 9
Fig. 9

Three-layered optical sample.

Fig. 10
Fig. 10

Interference signals and corresponding demodulated signals for a focal point located on the lower surface of the uppermost sample layer.

Fig. 11
Fig. 11

Alignment on beam (C) of scanning signals from three layers of the sample.

Tables (3)

Tables Icon

Table 1 Comparison of the Requirements of Novel and Conventional OCT Systems

Tables Icon

Table 2 Results of First Series of Experiments

Tables Icon

Table 3 Results of Second Series of Experiments

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Iout=I0 cosα sin ωt+ϕ,
I1=2I0J1αsinωtsinϕ,
I2=2I0J2αcos2ωtcosϕ,
I5=I0J1αsinϕ,
I6=I0J2αcosϕ.
Iac=I0 cosωdt+ϕ,
Iac2=I02-I02sin2ωdt+ϕ.
l+z=ngt.
n2=12NA2+NA4+41-NA21+lz21/2.
l=ΔTl×V,
z=ΔTz×V,

Metrics