Abstract

The spatial structure of dye-doped polymer-nanoparticle gain media, reported to generate spatially homogeneous single-transverse-mode laser beams, has been examined by electron microscopy in the nanometer scale. It is found that the distribution of the silica nanoparticles in the laser dye-doped polymer is fairly uniform. There is some aggregation of silica particles into loose nanoclusters. However, the nanocluster dimensions are smaller than those necessary to satisfy the conditions for internal interference in the visible spectrum. This explains the absence of macroscopic spatial inhomogeneities in the emission laser beams.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, “Solid-state multiple-prism grating dye laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]
  2. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
    [CrossRef]
  3. F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
    [CrossRef]
  4. F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
    [CrossRef]
  5. A. Maslyukov, S. Solokov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  6. W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
    [CrossRef]
  7. A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
    [CrossRef]
  8. J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
    [CrossRef]
  9. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
    [CrossRef]
  10. F. J. Duarte, R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
    [CrossRef] [PubMed]
  11. F. J. Duarte, “Interference, diffraction, and refraction, via Dirac’s notation,” Am. J. Phys. 65, 637–640 (1997).
    [CrossRef]
  12. F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003).
  13. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).
  14. H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
    [CrossRef]

2003 (3)

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

F. J. Duarte, R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
[CrossRef] [PubMed]

2000 (3)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

1999 (1)

1997 (2)

F. J. Duarte, “Interference, diffraction, and refraction, via Dirac’s notation,” Am. J. Phys. 65, 637–640 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

1995 (2)

1994 (1)

1991 (1)

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Aldag, H. R.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Altman, J. C.

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Costela, A.

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Dolotov, S. M.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Duarte, F. J.

F. J. Duarte, R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
[CrossRef] [PubMed]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Interference, diffraction, and refraction, via Dirac’s notation,” Am. J. Phys. 65, 637–640 (1997).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Solid-state multiple-prism grating dye laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003).

Dunn, B.

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Ehrlich, J. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Garcia, O.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

Gratz, H.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

Holzer, W.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

James, R. O.

Kaivola, M.

Koldunov, M. F.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Kravchenko, Ya. V.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Manenkov, A. A.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Maslyukov, A.

Nishida, F.

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Nyholm, K.

Pacheco, D. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Penzkofer, A.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

Ponomarenko, E. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Popov, S.

Reznichenko, A. V.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Roskova, G. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Sastre, R.

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, “Measurements of ∂n/∂T in solid-state dye-laser gain media,” Appl. Opt. 39, 6522–6523 (2000).

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Schmitt, T.

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

Solokov, S.

Stone, R. E.

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Taylor, T. S.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Tsekhomskaya, T. S.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Am. J. Phys. (1)

F. J. Duarte, “Interference, diffraction, and refraction, via Dirac’s notation,” Am. J. Phys. 65, 637–640 (1997).
[CrossRef]

Appl. Opt. (4)

Chem. Phys. (1)

W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. Garcia-Moreno, R. Sastre, F. J. Duarte, “Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer,” Chem. Phys. 256, 125–136 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, “Enhancement of laser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials,” Chem. Phys. Lett. 369, 656–661 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. C. Altman, R. E. Stone, B. Dunn, F. Nishida, “Solid-state laser using a rhodamine-doped silica gel compound,” IEEE Photon. Technol. Lett. 3, 189–190 (1991).
[CrossRef]

Opt. Commun. (1)

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

Quantum Electron. (1)

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, E. P. Ponomarenko, A. V. Reznichenko, G. P. Roskova, T. S. Tsekhomskaya, “A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties,” Quantum Electron. 30, 1055–1059 (2000).
[CrossRef]

Other (1)

F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Nanograph of the Coumarin 500 DDPN laser medium. The scale shown corresponds to 200 nm. This particular nanograph represents approximately one fourth of the area from which data were collected.

Fig. 2
Fig. 2

Nanograph of the Rhodamine 6G DDPN laser medium. The scale shown corresponds to 200 nm. This particular nanograph represents approximately one fourth of the area from which data were collected.

Tables (1)

Tables Icon

Table 1 Average Dimensions of the Silicate Structure in the Dye-Doped Polymer Matrix

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

|x|s|2=j=1N Ψrj2+ 2 j=1N Ψrj×m=j+1N ΨrmcosΩm-Ωj,
dmsin Θm±sin Φm=Mλ,
Mλ/dm6.37.

Metrics