Abstract

Beam intensity scintillations, characterized by a refractive-index structure parameter and caused by variations of macrometeorological features of the coastal atmosphere such as air temperature, wind speed and direction, and relative humidity, are examined theoretically and experimentally. In our theoretical analysis we present two well-known models considered separately for over-water and over-land atmospheric optical communication or imaging channels. By means of comparison with our experiments carried out in midland coastal environments in southern and northern Israel, we show the limitations of the models to predict the refractive-index structure C n 2 parameter for both daytime and nighttime turbulent atmospheres in different coastal zone meteorological conditions. We also present an extension of an existing model with two different practical applications that, as is shown experimentally, can be a good predictor of C n 2 for optical atmospheric paths over midland coastal zones.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dion, P. B. W. Schwering, “On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer,” in Proceedings of the Infrared Information Symposia-Second NATO-IRIS Joint Symposium (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 41, pp. 305–322.
  2. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).
  3. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, Vol. 2, F. G. Smith, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 157–232.
  4. C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
    [CrossRef]
  5. W. B. Miller, J. C. Ricklin, “IMTURB: a module for imaging through optical turbulence,” Rep. ASL-TR-0221-27 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1990).
  6. V. Thiermann, A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
    [CrossRef]
  7. D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
    [CrossRef]
  8. W. J. Stewart, “A propagation model for Gaussian beam waves in clear air turbulence,” Rep. ASL-CR-88-0001-2 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1988).
  9. D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
    [CrossRef]
  10. D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
    [CrossRef]
  11. J. Piazzola, S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
    [CrossRef]
  12. D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
    [CrossRef]
  13. M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
    [CrossRef]
  14. J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
    [CrossRef]
  15. S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
    [CrossRef]
  16. S. G. Gathman, M. H. Smith, “Nature of surf-generated aerosol and its effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
    [CrossRef]
  17. N. S. Kopeika, System Engineering Approach to Imaging, Vol. PM38 of the Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).
  18. G. R. Ochs, “Measurements of the refractive index structure parameter by incoherent aperture scintillation techniques,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 107–115 (1989).
    [CrossRef]
  19. J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
    [CrossRef]
  20. S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978).
    [CrossRef]
  21. G. R. Ochs, R. R. Bergman, J. R. Snyder, “Laser beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969).
    [CrossRef]
  22. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 8.
  23. R. S. Laurence, “A review of the optical effects of the clear turbulent atmosphere,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 2–8 (1976).
    [CrossRef]
  24. C. A. Friehe, J. C. La Rue, F. H. Champagne, C. H. Gibson, G. F. Dreyer, “Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer,” J. Opt. Soc. Am. 65, 1502–1511 (1975).
    [CrossRef]
  25. A. Ishimaru, Wave Propagation and Scattering in Random Media Appendix C (Academic, New York, 1978), Chap. 20.
  26. R. L. Fante, “Electric beam propagation in turbulent media,” Proc. IEEE 63, 1669–1688 (1975).
    [CrossRef]
  27. V. I. Tatarski, “The effects of the turbulent atmosphere on wave propagation,” NOAA Rep. TT-68-50464 (U.S. Department of Commerce, Springfield, Va., 1971).
  28. V. Thiermann, A. Kohnle, “Modelling of optically and IR effective atmospheric turbulence,” AGARD CP-454, Paper 19 (NATO, Brussels, 1989).
  29. A. S. Monin, A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).
  30. J. C. Wyngaard, “On surface layer turbulence,” in Workshop on Micrometeorology, D. A. Haugen, ed. (American Meteorological Society, Boston, Mass., 1973), pp. 101–148.
  31. V. Thiermann, H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
    [CrossRef]
  32. J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
    [CrossRef]
  33. A. A. M. Holstag, A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
    [CrossRef]
  34. R. B. Stull, Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  35. N. Ben-Yosef, E. Tirosh, A. Weitz, E. Pinsky, “Refractive-index structure constant dependence on height,” J. Opt. Soc. Am. 69, 1616–1618 (1979).
    [CrossRef]
  36. N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
    [CrossRef]
  37. N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
    [CrossRef]

2004 (1)

S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
[CrossRef]

2001 (1)

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

2000 (1)

J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
[CrossRef]

1999 (1)

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

1998 (1)

J. Piazzola, S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
[CrossRef]

1994 (1)

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

1992 (2)

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

V. Thiermann, H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
[CrossRef]

1990 (1)

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

1988 (1)

V. Thiermann, A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
[CrossRef]

1983 (1)

A. A. M. Holstag, A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
[CrossRef]

1982 (1)

C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
[CrossRef]

1979 (1)

1975 (2)

1971 (1)

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

1969 (1)

1954 (1)

A. S. Monin, A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).

Autric, M. L.

M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
[CrossRef]

Beland, R. R.

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, Vol. 2, F. G. Smith, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 157–232.

Bendersky, S.

S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
[CrossRef]

Ben-Yosef, N.

Bergman, R. R.

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).

Blaunstein, N.

S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
[CrossRef]

Bonhommet, H.

M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
[CrossRef]

Bradley, E. F.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Businger, J. A.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Carlin, J. F.

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Champagne, F. H.

Clifford, S. F.

S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978).
[CrossRef]

Davidson, K. L.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
[CrossRef]

de Leeuw, G.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
[CrossRef]

Despiau, S.

J. Piazzola, S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
[CrossRef]

Dinstein, I.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
[CrossRef]

Dion, D.

D. Dion, P. B. W. Schwering, “On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer,” in Proceedings of the Infrared Information Symposia-Second NATO-IRIS Joint Symposium (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 41, pp. 305–322.

Dreyer, G. F.

Drumez, M.

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Fairall, C. W.

C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
[CrossRef]

Fante, R. L.

R. L. Fante, “Electric beam propagation in turbulent media,” Proc. IEEE 63, 1669–1688 (1975).
[CrossRef]

Ferthin, G.

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Frederickson, P. A.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Friehe, C. A.

Gathman, S. G.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

S. G. Gathman, M. H. Smith, “Nature of surf-generated aerosol and its effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

Gibson, C. H.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 8.

Grassl, H.

V. Thiermann, H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
[CrossRef]

Holstag, A. A. M.

A. A. M. Holstag, A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
[CrossRef]

Hutt, D. L.

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media Appendix C (Academic, New York, 1978), Chap. 20.

Israeli, R.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
[CrossRef]

Izumi, Y.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Jensen, D. R.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Kogan, I.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
[CrossRef]

Kohnle, A.

V. Thiermann, A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
[CrossRef]

V. Thiermann, A. Kohnle, “Modelling of optically and IR effective atmospheric turbulence,” AGARD CP-454, Paper 19 (NATO, Brussels, 1989).

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Kopeika, N.

S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
[CrossRef]

Kopeika, N. S.

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
[CrossRef]

N. S. Kopeika, System Engineering Approach to Imaging, Vol. PM38 of the Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).

La Rue, J. C.

Laurence, R. S.

R. S. Laurence, “A review of the optical effects of the clear turbulent atmosphere,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 2–8 (1976).
[CrossRef]

Laurent, J.

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Leisse, C. R.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

McGrath, C. P.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Miller, W. B.

W. B. Miller, J. C. Ricklin, “IMTURB: a module for imaging through optical turbulence,” Rep. ASL-TR-0221-27 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1990).

Monin, A. S.

A. S. Monin, A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).

Obukhov, A. M.

A. S. Monin, A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).

Ochs, G. R.

G. R. Ochs, R. R. Bergman, J. R. Snyder, “Laser beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969).
[CrossRef]

G. R. Ochs, “Measurements of the refractive index structure parameter by incoherent aperture scintillation techniques,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 107–115 (1989).
[CrossRef]

Piazzola, J.

J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
[CrossRef]

J. Piazzola, S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
[CrossRef]

Pinsky, E.

Ricklin, J. C.

W. B. Miller, J. C. Ricklin, “IMTURB: a module for imaging through optical turbulence,” Rep. ASL-TR-0221-27 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1990).

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).

Rousset, G.

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

Sadot, D.

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

Schachter, G. E.

C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
[CrossRef]

Schwering, P. B. W.

D. Dion, P. B. W. Schwering, “On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer,” in Proceedings of the Infrared Information Symposia-Second NATO-IRIS Joint Symposium (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 41, pp. 305–322.

Shemtov, D.

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

Smith, M. H.

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

S. G. Gathman, M. H. Smith, “Nature of surf-generated aerosol and its effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

Snyder, J. R.

Stewart, W. J.

W. J. Stewart, “A propagation model for Gaussian beam waves in clear air turbulence,” Rep. ASL-CR-88-0001-2 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1988).

Stull, R. B.

R. B. Stull, Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

Tanguy, M.

M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
[CrossRef]

Tatarski, V. I.

V. I. Tatarski, “The effects of the turbulent atmosphere on wave propagation,” NOAA Rep. TT-68-50464 (U.S. Department of Commerce, Springfield, Va., 1971).

Thiermann, V.

V. Thiermann, H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
[CrossRef]

V. Thiermann, A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
[CrossRef]

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

V. Thiermann, A. Kohnle, “Modelling of optically and IR effective atmospheric turbulence,” AGARD CP-454, Paper 19 (NATO, Brussels, 1989).

Tirosh, E.

van Eijk, A. M. J.

J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
[CrossRef]

Van Ulden, A. P.

A. A. M. Holstag, A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
[CrossRef]

Vigliano, P.

M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
[CrossRef]

Weitz, A.

Wyngaard, J. C.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

J. C. Wyngaard, “On surface layer turbulence,” in Workshop on Micrometeorology, D. A. Haugen, ed. (American Meteorological Society, Boston, Mass., 1973), pp. 101–148.

Boundary-Layer Meteorol. (1)

V. Thiermann, H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
[CrossRef]

J. Atmos. Sci. (1)

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

A. A. M. Holstag, A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. D (1)

V. Thiermann, A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
[CrossRef]

Opt. Eng. (8)

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

C. W. Fairall, K. L. Davidson, G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
[CrossRef]

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

J. Piazzola, S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
[CrossRef]

D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

J. Piazzola, A. M. J. van Eijk, G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
[CrossRef]

S. Bendersky, N. Kopeika, N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
[CrossRef]

Proc. IEEE (1)

R. L. Fante, “Electric beam propagation in turbulent media,” Proc. IEEE 63, 1669–1688 (1975).
[CrossRef]

Trans. Geophys. Inst. Akad. Nauk USSR (1)

A. S. Monin, A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).

Waves Random Media (1)

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

Other (19)

J. C. Wyngaard, “On surface layer turbulence,” in Workshop on Micrometeorology, D. A. Haugen, ed. (American Meteorological Society, Boston, Mass., 1973), pp. 101–148.

V. I. Tatarski, “The effects of the turbulent atmosphere on wave propagation,” NOAA Rep. TT-68-50464 (U.S. Department of Commerce, Springfield, Va., 1971).

V. Thiermann, A. Kohnle, “Modelling of optically and IR effective atmospheric turbulence,” AGARD CP-454, Paper 19 (NATO, Brussels, 1989).

W. J. Stewart, “A propagation model for Gaussian beam waves in clear air turbulence,” Rep. ASL-CR-88-0001-2 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1988).

R. B. Stull, Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 8.

R. S. Laurence, “A review of the optical effects of the clear turbulent atmosphere,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 2–8 (1976).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 266–277 (1989).
[CrossRef]

S. G. Gathman, M. H. Smith, “Nature of surf-generated aerosol and its effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

N. S. Kopeika, System Engineering Approach to Imaging, Vol. PM38 of the Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).

G. R. Ochs, “Measurements of the refractive index structure parameter by incoherent aperture scintillation techniques,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 107–115 (1989).
[CrossRef]

J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. SPIE1115, 116–123 (1989).
[CrossRef]

S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978).
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media Appendix C (Academic, New York, 1978), Chap. 20.

M. Tanguy, H. Bonhommet, M. L. Autric, P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 172–184 (1991).
[CrossRef]

W. B. Miller, J. C. Ricklin, “IMTURB: a module for imaging through optical turbulence,” Rep. ASL-TR-0221-27 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1990).

D. Dion, P. B. W. Schwering, “On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer,” in Proceedings of the Infrared Information Symposia-Second NATO-IRIS Joint Symposium (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 41, pp. 305–322.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, Vol. 2, F. G. Smith, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 157–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Location of experiments. (a) The Negev experimental area: the 3.76-km propagation path (A-B) and wind direction between 90 and 100 deg. (b) The Golan experimental area: the 2.47-km propagation path (C-D) and wind direction between 260 and 270 deg.

Fig. 2
Fig. 2

Simple block diagram of the experimental setup.

Fig. 3
Fig. 3

Typical measurements taken over a 24-h period for Golan coastal areas: (a) solar irradiance, (b) temperature, (c) wind speed, (d) relative humidity. Hours apply to daylight saving time.

Fig. 4
Fig. 4

Typical measurements taken over a 24-h period for Negev coastal areas: (a) solar irradiance, (b) temperature, (c) wind speed, (d) relative humidity. Hours apply to daylight saving time.

Fig. 5
Fig. 5

Plots of C n 2 for Golan coastal areas: (a) measured and (b) modeled.

Fig. 6
Fig. 6

Plots of C n 2 for Negev coastal areas: (a) measured and (b) modeled.

Fig. 7
Fig. 7

Scatterplots of modeled C n 2 versus measured C n 2 for day data: (a) Golan and (b) Negev experiments; m is the slope of the regression line and r is the Pearson error value.

Fig. 8
Fig. 8

Scatterplots of modeled C n 2 versus measured C n 2 for night data: (a) Golan and (b) Negev experiments, respectively.

Fig. 9
Fig. 9

Comparison between measured and practical modeled average C n 2 values: (a) Golan and (b) Negev experiments, respectively.

Fig. 10
Fig. 10

Comparison between measured and modeled C n 2 values versus (a) relative humidity and (b) wind speed data.

Fig. 11
Fig. 11

Comparison between measured and modeled C n 2 values versus (a) relative humidity data for the Golan coastal zone, normalized to U = 8 m/s and T = 20 °C, and (b) wind speed data for both the Negev and the Golan coastal zones, normalized to 40% relative humidity and T = 20 °C.

Tables (1)

Tables Icon

Table 1 Experimental Instrument Data

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

σ2=2.91Cneq2LD-1/3,
Cn2=79×10-6PT22CT2,
CT2=4β T2kz2/31+7 zL+20zL21/3
CT2=4β T2kz2/31-7 zL+75zL2-1/3
u=uklnzuz0-ψL-1,
T=-Q0u,
L=u2TkgT,
ψL=2 ln1+y2+ln1+y22-2 tan-1 y+π2,zu/L<0, unstable-4.7zu/L,zu/L>0, stable,
Q0=ηcpρ1-α1+γ/s1-AR-βdaytimecu31+ccpρ/Hmaxu3nighttime,
c=-427k2T5gzulnzu/z02.
ρ=1.286-0.00405T,
γ/s=1.4631-0.0923T+0.0027T2-3.18×10-5T-3.
Cn2=3.8×10-14W+fT+fU+fRH-5.3×10-13,
fT=2×10-15T,
fU=-2.5×10-15U+1.2×10-15U2-8.5×10-17U3,
fRH=-2.8×10-15RH+2.9×10-17RH2-1.1×10-19RH3,
Cn2h=Cn02h-4/3,
Cn2=3.8×10-14W+AexpT 10-4+fU+fRH-4.45×10-14,
fU=8×10-16U-4×10-18U2,
fRH=-8×10-16RH+5×10-18RH2;
fU=2.58×10-14U,
fRH=-6.797×10-15RH,
Cn2=fT+fU+fRH-1.9×10-14,
fT=3×10-17T,
fU=1.2×10-14U,
fRH=-7.5×10-16RH.

Metrics