Abstract

We report the correction of the shrinkage observed during UV postrecording curing in a holographic solgel material that was recently achieved by the use of various chemical formulations for the composition of the hybrid supporting matrix. We found that a chemical modification of the matrix noticeably attenuates the shrinkage (from 1.3% to 0.4% of the material’s initial thickness with the inclusion of just 20% tetramethylorthosilicate), providing a material with improved stability for permanent data storage applications. The holographic properties of samples with different binders are also reported. In addition, a theoretical study has revealed the way by which to compensate for angular deviation in the Bragg condition during UV postrecording by tailoring the binder shrinkage (s), the maximum refractive-index modulation capability of the photosensitive mixture (Δn), or both.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
    [Crossref]
  2. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
    [Crossref]
  3. R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
    [Crossref]
  4. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).
  5. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic medium,” Opt. Lett. 24, 658–660 (1999).
    [Crossref]
  6. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
    [Crossref]
  7. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [Crossref]
  8. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [Crossref]
  9. T. J. Trentler, J. E. Boyd, V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
    [Crossref]
  10. S. J. Zilker, “Holographic data storage—the materials challenge,” Chem. Phys. Chem. 3, 333–334 (2002).
    [Crossref]
  11. C. J. Brinker, G. W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, Calif., 1990).
  12. F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
    [Crossref]
  13. P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
    [Crossref] [PubMed]
  14. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [Crossref] [PubMed]
  15. T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
    [Crossref]
  16. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [Crossref]
  17. F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
    [Crossref]
  18. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
    [Crossref]
  19. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
    [Crossref]
  20. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).
  21. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, UK, 1984).
  22. G. L. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [Crossref]
  23. H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
    [Crossref]
  24. R. R. A. Syms, Practical Volume Holography (Oxford U. Press, New York, 1990).

2002 (1)

S. J. Zilker, “Holographic data storage—the materials challenge,” Chem. Phys. Chem. 3, 333–334 (2002).
[Crossref]

2001 (1)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

2000 (3)

T. J. Trentler, J. E. Boyd, V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
[Crossref]

1999 (3)

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic medium,” Opt. Lett. 24, 658–660 (1999).
[Crossref]

1998 (3)

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

G. L. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
[Crossref]

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

1997 (2)

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

1996 (1)

1971 (1)

Álvarez-Herrero, A.

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Awazu, K.

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Bair, H.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Belenguer, T.

P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[Crossref] [PubMed]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
[Crossref]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Blaya, S.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Blyler, L. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Boyd, C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Boyd, J. E.

Brinker, C. J.

C. J. Brinker, G. W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, Calif., 1990).

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Calvo, M. L.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

Carretero, L.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Changkakoti, R.

R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
[Crossref]

Cheben, P.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[Crossref] [PubMed]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Colburn, W. S.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).

Colvin, V. L.

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
[Crossref]

T. J. Trentler, J. E. Boyd, V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

del Monte, F.

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[Crossref] [PubMed]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
[Crossref]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

Dhar, L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic medium,” Opt. Lett. 24, 658–660 (1999).
[Crossref]

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Dreze, C.

R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
[Crossref]

Fimia, A.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Friesem, A. A.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

Ghosh, A. K.

R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
[Crossref]

Grover, C. P.

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Haines, K. A.

Hale, A.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, UK, 1984).

Harris, A. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Hirashima, H.

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Imai, H.

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Katz, H. E.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Krongauz, V. A.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

Levy, D.

P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[Crossref] [PubMed]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
[Crossref]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Mackenzie, J. D.

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

Madrigal, R. F.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Mallavia, R.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Moreno, E. M.

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Núñez, A.

P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[Crossref] [PubMed]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Onuki, H.

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Patel, S. S.

Patterson, L. R. B.

R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
[Crossref]

Psaltis, D.

Ramos, G.

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
[Crossref]

Scherer, G. W.

C. J. Brinker, G. W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, Calif., 1990).

Schilling, F. C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Schilling, M.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Schilling, M. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic medium,” Opt. Lett. 24, 658–660 (1999).
[Crossref]

Schnoes, M. G.

Schones, M. G.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

Solomatine, I.

Steckman, G. L.

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Oxford U. Press, New York, 1990).

Trentler, T. J.

Ulibarrena, M.

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

Vega-Cantu, Y. I.

Wahi, R. K.

Weiss, V.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

Wiltzius, P.

Wysocki, T.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Wysocki, T. L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Yasumori, M.

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Zhou, G.

Zilker, S. J.

S. J. Zilker, “Holographic data storage—the materials challenge,” Chem. Phys. Chem. 3, 333–334 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[Crossref]

Chem. Mater. (2)

T. J. Trentler, J. E. Boyd, V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999).
[Crossref]

Chem. Phys. Chem. (1)

S. J. Zilker, “Holographic data storage—the materials challenge,” Chem. Phys. Chem. 3, 333–334 (2002).
[Crossref]

IBM J. Res. Dev. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000).
[Crossref]

J. Imaging Sci. Technol. (1)

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

J. Sol-Gel Sci. Technol. (2)

F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999).
[Crossref]

H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997).
[Crossref]

Opt. Lett. (3)

Other (9)

R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995).
[Crossref]

C. J. Brinker, G. W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, Calif., 1990).

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002).
[Crossref]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003).
[Crossref]

T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997).
[Crossref]

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, UK, 1984).

R. R. A. Syms, Practical Volume Holography (Oxford U. Press, New York, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Molecular structure of organic compounds used in the preparation of the solgel materials. (a) TMOS, (b) GPTMS, (c) Rose Bengal, (d) AA, (e) BAA, (f) TEA.

Fig. 2
Fig. 2

(a) Geometry employed for recording of single transmission phase volume holograms and (b) schematic representation of the shrinkage process.

Fig. 3
Fig. 3

Angular selectivity of an AA-BAA pure GPTMS sample (GP0) with 93% diffraction efficiency.

Fig. 4
Fig. 4

Bragg detuning experimental data (symbols) and better fits (lines) as a function of slanted angle (θ s ) for samples GP0, GP10, and GP20 (circles and dotted-dashed line, open triangles and dashed line, and filled squares and solid line, respectively).

Fig. 5
Fig. 5

Angular selectivity of samples GP0 (●), GP10 (□), GP20 (▲), GP30 (▽), GP40 (◆), and GP50 (×).

Fig. 6
Fig. 6

Evolution of (a) diffraction efficiency and (b) sensitivity with TMOS content.

Fig. 7
Fig. 7

Evolution of Bragg detuning as a function of slanted recording angle for (a) GP0 samples assuming refractive-index modulation Δn = 0.019 [solid curve (s = 0), dashed curve (s = 1.005), dotted curve (s = 0.995), dashed-dotted-dotted curve (s = 0.987)]; (b) GP10 samples assuming a refractive-index modulation Δn = 0.0105 [solid curve (s = 0), dashed curve (s = 1.005), dotted curve (s = 0.995), dashed-dotted-dotted curve (s = 0.993)]; and (c) GP20 samples assuming a refractive-index modulation Δn = 0.006 [solid curve (s = 0), dashed curve (s = 1.005), dotted curve (s = 0.990), dashed-dotted-dotted curve (s = 0.996)].

Tables (2)

Tables Icon

Table 1 Important Holographic Parameters for the GP0 Solgel Holographic Materiala

Tables Icon

Table 2 Average Values for the More Relevant Holographic Parameters and Shrinkage (s, for Ea = 220 mJ/cm2, where Ea is the Average Exposure) as a Function of the TMOS Content

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

θ1θs=arcsinsin θ1airθsn,
θ2θs=arcsinsin θ2airθsn,
δ1θs=θ1θs-θ2θs2,
δ2θs=θ1θs+θ2θs2,
Λ0θs=λ02|sinδ1θs|.
θ0_Bragg_airθs, λr=arcsinsinδ2θs+arcsinλr2Λ0θs,
δ2_ps, θs=π2-arctantanπ2-δ2θss.
Λ0_ps, θs=Λ0θssinπ2-δ2_ps, θssinπ2-δ2s, θs.
θBragg_ps, n, θs=arcsinsinδ2-ps, θs+arcsinλr2Λ0-ps, θsn
θBragg_air_ps, θs, n=arcsinn sinθBragg_ps, θs, n.
ΔθBragg=θBragg_air_p-θ0_Bragg_air.

Metrics