Abstract

A measurement setup that is capable of measuring the internal transmittance of fused-silica prisms at 193 nm with a precision better than 0.01%/cm (3σ) is presented. Its application to materials and wavelengths other than those that were chosen here for demonstration is straightforward. A lack of any standards makes it impossible to determine the absolute accuracy (also called measurement uncertainty) experimentally; however, calculations indicate that it is almost within the same margin as the precision.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hitachi product information for U-4100 UV-Visible-NIR spectrophotometer, Publ. HTB-E013 2002.3 (Hitachi, Tokyo, 2002).
  2. F. Manoochehri, F. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
    [CrossRef] [PubMed]
  3. G. L. Bucher, S. L. Logunov, “Method and apparatus for measuring internal transmittance,” Patent Cooperation Treaty publ. WO 00/57158 (World Intellectual Property Organization, Geneva, Switzerland, 28September2000).
  4. C. M. Smith, N. F. Borrelli, R. J. Araujo, “Transient absorption in excimer-exposed silica,” Appl. Opt. 39, 5778–5784 (2000).
    [CrossRef]
  5. M. Ogawa, “Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
    [CrossRef]
  6. T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
    [CrossRef] [PubMed]
  7. L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
    [CrossRef]

2000 (1)

1998 (1)

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

1995 (1)

1988 (1)

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

1971 (1)

M. Ogawa, “Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

Araujo, R. J.

Black, G.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Borrelli, N. F.

Bucher, G. L.

G. L. Bucher, S. L. Logunov, “Method and apparatus for measuring internal transmittance,” Patent Cooperation Treaty publ. WO 00/57158 (World Intellectual Property Organization, Geneva, Switzerland, 28September2000).

Canfield, L. R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Desor, R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Gadd, G. E.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Ikonen, F.

Jusinski, L. E.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Korde, R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Logunov, S. L.

G. L. Bucher, S. L. Logunov, “Method and apparatus for measuring internal transmittance,” Patent Cooperation Treaty publ. WO 00/57158 (World Intellectual Property Organization, Geneva, Switzerland, 28September2000).

Manoochehri, F.

Ogawa, M.

M. Ogawa, “Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

Schmidtke, H.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Slanger, T. G.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Smith, C. M.

Vest, R. E.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Appl. Opt. (2)

J. Chem. Phys. (1)

M. Ogawa, “Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV regions,” J. Chem. Phys. 54, 2550–2556 (1971).
[CrossRef]

Metrologia (1)

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Science (1)

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “A new laboratory source of ozone and its potential atmospheric implications,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Other (2)

Hitachi product information for U-4100 UV-Visible-NIR spectrophotometer, Publ. HTB-E013 2002.3 (Hitachi, Tokyo, 2002).

G. L. Bucher, S. L. Logunov, “Method and apparatus for measuring internal transmittance,” Patent Cooperation Treaty publ. WO 00/57158 (World Intellectual Property Organization, Geneva, Switzerland, 28September2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic showing how the internal path length is varied as the sample is moved through the optical beam.

Fig. 2
Fig. 2

Schematic of the complete optical setup. IF, interference.

Fig. 3
Fig. 3

Sample scan through a fused-silica prism. Each data point represents the average over 1000 laser pulses. Diamond-shaped data points indicate clipping at the prism edges.

Fig. 4
Fig. 4

T i of a fused-silica prism repeatedly measured without any changes in the setup. Each point represents the average over six scans (see Fig. 3). Standard variation, 3σ < 0.005%/cm.

Fig. 5
Fig. 5

T i of the same sample repeatedly measured with realignment of the prism, realignment of the UV beam of the setup, or both. Before the last measurement the sample had additionally been plasma cleaned.

Tables (1)

Tables Icon

Table 1 Sources of Error

Metrics