Abstract

Even in the semiconductor industry, free-space optical technology is nowadays seen as a prime option for solving the continually aggravating problem with VLSI chips, namely, that the interconnect technology has failed to keep pace with the increase in communication volume. To make free-space optics compatible with established lithography-based design and fabrication techniques the concept of planar integration was proposed approximately a decade ago. Here its evolution into a photonic microsystems engineering concept is described. For demonstration, a multichip module with planar-integrated free-space optical vector-matrix-type interconnects was designed and built. It contains flip-chip-bonded vertical-cavity surface emitting laser arrays and a hybrid chip with an array of multiple-quantum-well p-i-n diodes on top of a standard complementary metal-oxide semiconductor circuit as key optoelectronic hardware components. The optical system is integrated into a handy fused-silica substrate and fabricated with surface-relief diffractive phase elements. It has been optimized for the given geometrical and technological constraints and provides a good interconnection performance, as was verified in computer simulations on the basis of ray tracing and in practical experiments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription