Abstract

Classification decision tree algorithms have recently been used in pattern-recognition problems. In this paper, we propose a self-designing system that uses the classification tree algorithms and that is capable of recognizing a large number of signals. Preprocessing techniques are used to make the recognition process more effective. A combination of the original, as well as the preprocessed, signals is projected into different transform domains. Enormous sets of criteria that characterize the signals can be developed from the signal representations in these domains. At each node of the classification tree, an appropriately selected criterion is optimized with respect to desirable performance features such as complexity and noise immunity. The criterion is then employed in conjunction with a vector quantizer to divide the signals presented at a particular node in that stage into two approximately equal groups. When the process is complete, each signal is represented by a unique composite binary word index, which corresponds to the signal path through the tree, from the input to one of the terminal nodes of the tree. Experimental results verify the excellent classification accuracy of this system. High performance is maintained for both noisy and corrupt data.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelet packet correlation methods in biometrics

Pablo Hennings, Jason Thornton, Jelena Kovačević, and B. V. K. Vijaya Kumar
Appl. Opt. 44(5) 637-646 (2005)

Adaptive-clustering optical neural net

David P. Casasent and Etienne Barnard
Appl. Opt. 29(17) 2603-2615 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription