Abstract

A heteroassociative joint transform correlation (JTC) technique is proposed for recognizing and tracking multiple heteroassociative or dissimilar targets from gray-level image sequences by use of the concept of fringe-adjusted JTC and a multiple-target-detection algorithm. A fringe-adjusted JTC technique is used to ensure quantification of the similarities among several input images while it satisfies the equal-correlation-peak criterion. Tracking is accomplished by retrieval of the target motion information estimated from multiple consecutive image frames. An enhanced version of the fringe-adjusted filter is incorporated into the heteroassociative multiple-target-detection process to optimize the correlation performance. The feasibility of the proposed technique is tested by computer simulation with real infrared image data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  2. F. T. S. Yu, J. E. Ludman, “Microcomputer based programmable joint transform correlator for automatic pattern recognition and identification,” Opt. Lett. 11, 395–397 (1986).
    [CrossRef] [PubMed]
  3. B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1998).
    [CrossRef]
  4. D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
    [CrossRef]
  5. M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
    [CrossRef] [PubMed]
  6. M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
    [CrossRef]
  7. A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
    [CrossRef]
  8. O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
    [CrossRef]
  9. J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).
  10. W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
    [CrossRef]
  11. Q. Tang, B. Javidi, “Multiple-object detection with a chirp-encoded joint transform correlator,” Appl. Opt. 32, 4344–4350 (1993).
    [CrossRef]
  12. F. Cheng, P. Andres, F. T. S. Yu, D. Gregory, “Intensity compensation filter for joint transform correlation peak enhancement,” Appl. Opt. 32, 4357–4364 (1993).
    [CrossRef] [PubMed]
  13. M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
    [CrossRef]
  14. M. S. Alam, M. M. Rahman, “Class-associative multiple target detection by use of fringe-adjusted joint transform correlation,” Appl. Opt. 33, 456–463 (2002).
  15. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  16. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef] [PubMed]
  17. M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).
  18. K. Gudmundsson, A. A. S. Awwal, “Subimaging technique to improve phase-only filter search capability,” Appl. Opt. 42, 4709–4717 (2003).
    [CrossRef] [PubMed]
  19. M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
    [CrossRef]

2003

2002

M. S. Alam, M. M. Rahman, “Class-associative multiple target detection by use of fringe-adjusted joint transform correlation,” Appl. Opt. 33, 456–463 (2002).

2001

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
[CrossRef]

2000

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

1998

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1998).
[CrossRef]

1994

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

1993

1992

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

1991

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

1986

1984

1966

1964

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Alam, M. S.

M. S. Alam, M. M. Rahman, “Class-associative multiple target detection by use of fringe-adjusted joint transform correlation,” Appl. Opt. 33, 456–463 (2002).

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
[CrossRef]

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
[CrossRef] [PubMed]

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Andres, P.

Awwal, A. A. S.

K. Gudmundsson, A. A. S. Awwal, “Subimaging technique to improve phase-only filter search capability,” Appl. Opt. 42, 4709–4717 (2003).
[CrossRef] [PubMed]

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Bognar, J. G.

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

Cheng, F.

Cherri, A. K.

Feng, D.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Flannery, D. L.

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Gianino, P. D.

Goodman, J. W.

Gregory, D.

Gudmundsson, K.

Hahn, W. B.

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Haque, M.

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Hardie, R. C.

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

Horner, J. L.

Iftekharuddin, K. M.

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Javidi, B.

Juday, R. D.

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

Karim, M. A.

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
[CrossRef] [PubMed]

Kettani, H.

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Khan, J.

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Knopp, J.

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

Kuo, C.

Ludman, J. E.

Perez, O.

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

Rahman, M. M.

M. S. Alam, M. M. Rahman, “Class-associative multiple target detection by use of fringe-adjusted joint transform correlation,” Appl. Opt. 33, 456–463 (2002).

Tang, Q.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Wai, C. N.

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

Weaver, C. S.

Xia, S.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Yasuda, B. J.

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

Yu, F. T. S.

Zhao, H.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Appl. Opt.

IEEE Trans. Inf. Theory

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

IEEE Trans. Instrum. Measur.

M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda, “Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Measur. 49, 915–923 (2000).
[CrossRef]

Microwave Opt. Technol. Lett.

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

Opt. Commun.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Opt. Eng.

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Opt. Lett.

Other

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal, K. M. Iftekharuddin, “Fringe-adjusted JTC based target detection and tracking using subframes from a video sequence,” in Photonic Devices and Algorithms for Computing V, K. Iftekharruddin, A. A. S. Awwal, eds., Proc. SPIE5201 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Real-time fringe-adjusted heteroassociative JTC structure.

Fig. 2
Fig. 2

(a) Unknown input image, frame number 1, (b) reference subimage 1, (c) reference subimage 2, (d) input subimages.

Fig. 3
Fig. 3

Correlation output corresponding to the input image of Fig. 2.

Fig. 4
Fig. 4

(a) Unknown input image, frame number 85. (b) Correlation output corresponding to the input joint image of (a).

Fig. 5
Fig. 5

(a) Unknown input image, frame number 165. (b) Correlation output corresponding to the input joint image of (a).

Fig. 6
Fig. 6

Tracking results of using the heteroassociative fringe-adjusted JTC for two sequences: left to right, top to bottom (a) frames 20, 60, 100, 120, 140, and 164 of sequence 1 (L19_11); (b) frames 31, 50, 60, 86, 100, and 129 of sequence 2 (L19_20).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

fx, y=rx, y+y0+sx, y-y0=rx, y+y0+i=1m pix-xi, y-yi-y0+nx, y-y0.
Fu, v=|Ru, v|expjϕru, v+jvy0+i=1m |Piu, v|expjϕpiu, v-juxi-jvyi-jvy0+|Nu, v|expjϕnu, v-jvy0,
|Fu, v|2=|Ru, v|2+i=1m |Piu, v|2+|Nu, v|2+2 i=1m-1k=i+1m |Piu, vPku, v|×cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1m |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0+2 i=1m |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0.
fax, y=rx, y+y0+-1ai=1m pix-xi,y-yi-y0+-1anx, y-y0,
Fau, v=|Ru, v|expjϕru, v+jvy0+-1ai=1m |Piu, v|expjϕpiu, v-juxi-jvyi-jvy0+-1a|Nu, v|expjϕnu, v-jvy0.
Tau, v=|Fau, v|2=|Ru, v|2+i=1m |Piu, v|2+|Nu, v|2+2 i=1m-1k=i+1m |Piu, vPku, v|×cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1m |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2-1ai=1m |Piu, vRu, v|×cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2-1a|Ru, vNu, v|×cosϕru, v-ϕnu, v+2vy0.
Tu, v=T0u, v-T1u, v=4 i=1n |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+4|Ru, vNu, v|×cosϕru, v-ϕnu, v+2vy0.
tx, y=2 i=1m pix-xi, y-yi+y0r*x, y+y0+2 i=1m pi*x-xi, y-yi-y0rx, y-y0+2rx, y-y0n*x, y-y0+2r*x, y+y0nx, y+y0.
HFAFu, v=Bu, vAu, v+|Ru, v|2,
Gu, v=HFAFu, v×Tu, v=1|Ru, v|24 i=1m |Piu, vRu, v|× cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+4|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0,
fa1x, y=r1x, y+y0+-1asx, y-y0=r1x, y+y0+-1ai=1m pix-xi,y-yi-y0+-1anx, y-y0,
fa2x, y=r2x, y+y0+-1asx, y-y0=r2x, y+y0+-1ai=1m pix-xi,y-yi-y0+-1anx, y-y0.
Ta1u, v=|Fa1u, v|2=|R1u, v|2+i=1m |Piu, v|2+|Nu, v|2+2 i=1m-1k=i+1m |Piu, vPku, v|×cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1m |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2-1ai=1m |Piu, vR1u, v|×cosϕpiu, v-ϕr1u, v-uxi-vyi-2vy0+2-1a|R1u, vNu, v|cosϕr1u, v-ϕnu, v+2vy0,
Ta2u, v=|Fa2u, v|2=|R2u, v|2+i=1m |Piu, v|2+|Nu, v|2+2 i=1m-1k=i+1m |Piu, vPku, v|×cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1m |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2-1ai=1m |Piu, vR2u, v|×cosϕpiu, v-ϕr2u, v-uxi-vyi-2vy0+2-1a|R2u, vNu, v|×cosϕr2u, v-ϕnu, v+2vy0,
Tcu, v=T01u, v-T11u, v=4 i=1m |Piu, vR1u, v|cosϕpiu, v-ϕr1u, v-uxi-vyi-2vy0+4|R1u, vNu, v|cosϕr1u, v-ϕnu, v+2vy0,
Tdu, v=T02u, v-T12u, v=4 i=1m |Piu, vR2u, v|cosϕpiu, v-ϕr2u, v-uxi-vyi-2vy0+4|R2u, vNu, v|cosϕr2u, v-ϕnu, v+2vy0.
Tu, v=αTcu, v+βTdu, v=α4 i=1m |Piu, vR1u, v|cosϕpiu, v-ϕr1u, v-uxi-vyi-2vy0+4|R1u, vNu, v|cosϕr1u, v-ϕnu, v+2vy0 +β{4 i=1m |Piu, vR2u, v|cosϕpiu, v-ϕr2u, v-uxi-vyi-2vy0+4|R2u, vNu, v|cosϕr2u, v-ϕnu, v+2vy0,
HFAFu, v=Bu, vAu, v+|R1u, v|2+|R2u, v|2,
Gu, v=HFAF×Tu, v=αTcu, v+βTdu, vAu, v+|R1u, v|2+|R2u, v|2.

Metrics