Abstract

A new linear-features detection method is proposed for extracting straight edges and lines in synthetic-aperture radar images. This method is based on the localized Radon transform, which produces geometrical integrals along straight lines. In the transformed domain, linear features have a specific signature: They appear as strongly contrasted structures, which are easier to extract with the conventional ratio edge detector. The proposed method is dedicated to applications such as geographical map updating for which prior information (approximate length and orientation of features) is available. Experimental results show the method’s robustness with respect to poor radiometric contrast and hidden parts and its complementarity to conventional pixel-by-pixel approaches.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, Mass., 1998).
  2. J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).
  3. R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
    [CrossRef]
  4. A.-C. Bovik, “On detecting edges in speckled imagery,” IEEE Trans. Acoust. Speech Signal Process. 36, 1618–1627 (1988).
    [CrossRef]
  5. F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
    [CrossRef]
  6. J. Radon, “On the determination of function from their integrals along certain manifolds,” Ber. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277 (1917).
  7. P.-V.-C. Hough, “Method and means of recognizing complex patterns,” U.S. patent3,069,654 (18December, 1962).
  8. S.-R. Deans, “Hough transform from the radon transform,” IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981).
    [CrossRef] [PubMed]
  9. A.-C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  10. G.-T. Herman, “Image reconstruction from projections,” in The Fundamentals of Computerized Tomography (Springer-Verlag, New York, 1980).
  11. M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
    [CrossRef]
  12. T.-S. Durrani, D. Bisset, “The Radon transform and its properties,” Geophysics 49, 1180–1187 (1984); errata 50, 884–886 (1985).
    [CrossRef]
  13. P.-A. Toft, K.-V. Hansen, “Fast Radon transform for detection of seismic reflections,” in Signal Processing VII: Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, W. A. Sandham, eds. (n.p., 1994), Vol. I, pp. 229–232.
  14. A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
    [CrossRef]
  15. I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.
  16. D. Ludwig, “The Radon transform in Euclidean space,” Commun. Pure Appl. Math. 19, 49–81 (1966).
    [CrossRef]
  17. S.-R. Deans, The Radon Transform and Some of Its Applications, 2nd ed. (Krieger, Malabar, Fla., 1993).
  18. S. Stergios, Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems, Electrical Engineering and Signal Processing Series (Lewis, Boca Raton Fla., 2001).
  19. O. Germain, P. Réfrégier, “Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach,” IEEE Trans. Image Process. 10, 72–78 (2001).
    [CrossRef]
  20. J. W. Goodman, Statistical Properties of Laser Speckle Patterns, 2nd ed. (Springer-Verlag, New York, 1984).

2001 (1)

O. Germain, P. Réfrégier, “Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach,” IEEE Trans. Image Process. 10, 72–78 (2001).
[CrossRef]

1998 (1)

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

1996 (1)

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

1995 (1)

A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
[CrossRef]

1990 (1)

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

1988 (2)

R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
[CrossRef]

A.-C. Bovik, “On detecting edges in speckled imagery,” IEEE Trans. Acoust. Speech Signal Process. 36, 1618–1627 (1988).
[CrossRef]

1984 (1)

T.-S. Durrani, D. Bisset, “The Radon transform and its properties,” Geophysics 49, 1180–1187 (1984); errata 50, 884–886 (1985).
[CrossRef]

1981 (1)

S.-R. Deans, “Hough transform from the radon transform,” IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981).
[CrossRef] [PubMed]

1966 (1)

D. Ludwig, “The Radon transform in Euclidean space,” Commun. Pure Appl. Math. 19, 49–81 (1966).
[CrossRef]

1917 (1)

J. Radon, “On the determination of function from their integrals along certain manifolds,” Ber. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277 (1917).

Baltzer, F.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Bisset, D.

T.-S. Durrani, D. Bisset, “The Radon transform and its properties,” Geophysics 49, 1180–1187 (1984); errata 50, 884–886 (1985).
[CrossRef]

Bousquet, P.

R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
[CrossRef]

Bovik, A.-C.

A.-C. Bovik, “On detecting edges in speckled imagery,” IEEE Trans. Acoust. Speech Signal Process. 36, 1618–1627 (1988).
[CrossRef]

Copeland, A.-C.

A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
[CrossRef]

Deans, S.-R.

S.-R. Deans, “Hough transform from the radon transform,” IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981).
[CrossRef] [PubMed]

S.-R. Deans, The Radon Transform and Some of Its Applications, 2nd ed. (Krieger, Malabar, Fla., 1993).

Deroin, J.-P.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Dixon, J.-A.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Durrani, T.-S.

T.-S. Durrani, D. Bisset, “The Radon transform and its properties,” Geophysics 49, 1180–1187 (1984); errata 50, 884–886 (1985).
[CrossRef]

Folinsbee, J.-T.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Germain, O.

O. Germain, P. Réfrégier, “Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach,” IEEE Trans. Image Process. 10, 72–78 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Properties of Laser Speckle Patterns, 2nd ed. (Springer-Verlag, New York, 1984).

Hansen, K.-V.

P.-A. Toft, K.-V. Hansen, “Fast Radon transform for detection of seismic reflections,” in Signal Processing VII: Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, W. A. Sandham, eds. (n.p., 1994), Vol. I, pp. 229–232.

Herman, G.-T.

G.-T. Herman, “Image reconstruction from projections,” in The Fundamentals of Computerized Tomography (Springer-Verlag, New York, 1980).

Hough, P.-V.-C.

P.-V.-C. Hough, “Method and means of recognizing complex patterns,” U.S. patent3,069,654 (18December, 1962).

Jahans, P.-A.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Kak, A.-C.

A.-C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Khoo, V.

I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.

Kwoh, L. K.

I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.

Lin, I.-I.

I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.

Lin, Y.-C.

I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.

Lointier, M.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Lopes, A.

R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
[CrossRef]

Ludwig, D.

D. Ludwig, “The Radon transform in Euclidean space,” Commun. Pure Appl. Math. 19, 49–81 (1966).
[CrossRef]

Mai^tre, H.

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Mangin, J-F.

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

Mougin, E.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Nicolas, J.-M.

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

Oliver, C.

C. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, Mass., 1998).

Pechersky, E.

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

Pénicand, C.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Prost, M.-T.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Quegan, S.

C. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, Mass., 1998).

Radon, J.

J. Radon, “On the determination of function from their integrals along certain manifolds,” Ber. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277 (1917).

Ravichandran, G.

A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
[CrossRef]

Réfrégier, P.

O. Germain, P. Réfrégier, “Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach,” IEEE Trans. Image Process. 10, 72–78 (2001).
[CrossRef]

Rey, M.-T.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Rudant, J.-P.

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Slaney, M.

A.-C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Stergios, S.

S. Stergios, Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems, Electrical Engineering and Signal Processing Series (Lewis, Boca Raton Fla., 2001).

Toft, P.-A.

P.-A. Toft, K.-V. Hansen, “Fast Radon transform for detection of seismic reflections,” in Signal Processing VII: Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, W. A. Sandham, eds. (n.p., 1994), Vol. I, pp. 229–232.

Touzi, R.

R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
[CrossRef]

Trivedi, M.-M.

A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
[CrossRef]

Tunaley, J.-K.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Tupin, F.

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

Vant, M.-R.

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

Ber. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. (1)

J. Radon, “On the determination of function from their integrals along certain manifolds,” Ber. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277 (1917).

Bull. Soc. Fr. Photogramm. Teledetect. (1)

J.-P. Rudant, F. Baltzer, J.-P. Deroin, M. Lointier, H. Maı̂tre, E. Mougin, C. Pénicand, M.-T. Prost, “ERS-1 and JERS-1 Satellite image contribution to general and thematic mapping in the tropical rain forest context, examples in french Guiana and in bordering regions,” Bull. Soc. Fr. Photogramm. Teledetect. 142, 15–31 (1996).

Commun. Pure Appl. Math. (1)

D. Ludwig, “The Radon transform in Euclidean space,” Commun. Pure Appl. Math. 19, 49–81 (1966).
[CrossRef]

Geophysics (1)

T.-S. Durrani, D. Bisset, “The Radon transform and its properties,” Geophysics 49, 1180–1187 (1984); errata 50, 884–886 (1985).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

A.-C. Bovik, “On detecting edges in speckled imagery,” IEEE Trans. Acoust. Speech Signal Process. 36, 1618–1627 (1988).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (4)

F. Tupin, H. Maı̂tre, J-F. Mangin, J.-M. Nicolas, E. Pechersky, “Detection of linear features in SAR images: applications to road network extraction,” IEEE Trans. Geosci. Remote Sens. 36, 434–453 (1998).
[CrossRef]

R. Touzi, A. Lopes, P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764–773 (1988).
[CrossRef]

M.-T. Rey, J.-K. Tunaley, J.-T. Folinsbee, P.-A. Jahans, J.-A. Dixon, M.-R. Vant, “Application of Radon transform techniques to wake detection in Seasat-A SAR images,” IEEE Trans. Geosci. Remote Sens. 28, 553–560 (1990).
[CrossRef]

A.-C. Copeland, G. Ravichandran, M.-M. Trivedi, “Localized Radon transform-based detection of ship wakes in SAR images,” IEEE Trans. Geosci. Remote Sens. 33, 35–45 (1995).
[CrossRef]

IEEE Trans. Image Process. (1)

O. Germain, P. Réfrégier, “Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach,” IEEE Trans. Image Process. 10, 72–78 (2001).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S.-R. Deans, “Hough transform from the radon transform,” IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981).
[CrossRef] [PubMed]

Other (9)

A.-C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

G.-T. Herman, “Image reconstruction from projections,” in The Fundamentals of Computerized Tomography (Springer-Verlag, New York, 1980).

P.-V.-C. Hough, “Method and means of recognizing complex patterns,” U.S. patent3,069,654 (18December, 1962).

I.-I. Lin, L. K. Kwoh, Y.-C. Lin, V. Khoo, “Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm,” Igarss 197: 1977 IEEE International Geoscience and Remote Sensing Symposium Proceedings, T. I. Stein, ed. (IEEE, New York, 1997), pp. 151–153.

S.-R. Deans, The Radon Transform and Some of Its Applications, 2nd ed. (Krieger, Malabar, Fla., 1993).

S. Stergios, Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems, Electrical Engineering and Signal Processing Series (Lewis, Boca Raton Fla., 2001).

C. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, Mass., 1998).

P.-A. Toft, K.-V. Hansen, “Fast Radon transform for detection of seismic reflections,” in Signal Processing VII: Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, W. A. Sandham, eds. (n.p., 1994), Vol. I, pp. 229–232.

J. W. Goodman, Statistical Properties of Laser Speckle Patterns, 2nd ed. (Springer-Verlag, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Two original linear features in the spatial domain. (b) RT domain: The two lines of the spatial domain become two points in the Radon domain. (c) Spatial domain after inversion of the RT.

Fig. 2
Fig. 2

Geometrical interpretation of the LRT.14 θ and ρ define the integration line of the conventional RT; λ and σ, the integration length and the origin specific to the LRT, respectively. 0 is the image center.

Fig. 3
Fig. 3

Correspondence between image and LRT domains: ρ0, distance from image origin to the LF in the spatial domain; σmin and σmax, limits of the LF signature in the LRT domain.

Fig. 4
Fig. 4

Block diagram of the LFDAPI method. Parameters are indicated at the steps where they have to be set by the operator according to the data and prior information.

Fig. 5
Fig. 5

Computation of the directional ratios r ρ and r σ with parameters Δh ρ (height) and Δw ρ (width) for directional ratio r ρ, and Δh σ and Δw σ for r σ.

Fig. 6
Fig. 6

(a) Variance in the LRT domain according to integration length λ ∈ [1, 100]: var = R 0 2/Lλ, mean radiometry R 0 = 100, initial number of looks L = 3. (b) cpdf of the ratio of local means: r =min(μ12, μ21) in the LRT domain for λ = 1, 10, 100, 200, with C r = 2 and R 1 = 100.

Fig. 7
Fig. 7

Computation of the LRT domain by averaging of N LRT transforms computed with different integration lengths λmin: minimum length and multiples of λmin.

Fig. 8
Fig. 8

(a) Original 1024 × 1024 SAR image of an area in southwest Cameroon showing two areas where the LF is poorly contrasted (1) and even invisible (2). (b) 1975 JOG map at 1/250000th scale. (c) Result of LF detection (two roads) along two orientations: oblique and approximately horizontal. (d) Superposition with the original image.

Fig. 9
Fig. 9

(a) Original 512 × 512 SAR image of a railway segment. (b) Corresponding 1975 JOG map at 1/250000th scale. (c) Result of LFDAPI detection. (d) Superposition with the original image.

Fig. 10
Fig. 10

(a) Original 512 × 512 SAR image of a coastal area of Cameroon. (b) Result of LFDAPI detection. (c) Result of conventional ratio edge detector.

Fig. 11
Fig. 11

(a) Original SAR image: 80 × 144 pixel portion from Fig. 10(a). (b) Combined detections from the LFDAPI method (aligned black and blue-gray pixels) and the conventional ratio (black pixels).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f=fρ, θ=D fx, yδρ-x cos θ-y sin θdxdy,
-1f=fx, y=12π20π0f/ρρ, θx cos θ+y sin θ-ρdρdθ=12π0π fρ, θρdθ,
Gx=x=1π-gtx-tdt.
xmin=minρ cos θ-σ sin θ, ρ cos θ-σ+λsin θ,xmax=maxρ cos θ-σ sin θ, ρ cos θ-σ+λsin θ,ymin=ρ sin θ+σ cos θ,ymax=ρ sin θ+σ+λcos θ.
locI=Ilocρ, θ, σ, λ=xminxmaxyminymax Ix, yδρ-x cos θ-y sin θdxdy.
mmini=minρi cos θ-σi sin θ, ρi cos θ-σi+λsin θ,mmaxi=maxρi cos θ-σi sin θ, ρi cos θ-σi+λsin θ,nmini=ρi sin θ+σi cos θ,nmaxi=ρi sin θ+σi+λcos θ.
Ilocρi, σi, θ, λ=m=mminimmaxin=nmininmaxi Im, nδρi-m cos θ-n sin θ.
rρ=minμρiμρj, μρjμρi0, 1,
rρ=minminμρiμρ0, μρ0μρi, minμρ0μρj, μρjμρ00, 1.
rσ=minμσiμσj, μσjμσi0, 1.
varR02/Lλ,
Īlocρ, σ=1NLRTi=1NLRT Ilocλiρ, σ.
pr/R1, R2, N1, N2, λ=ΓLλN1+LλN2ΓLλN1ΓLλN2LλN1R1LλN1LλN2R2LλN2×rLλN1-1rLλN1/R1+LλN2/R2LλN1+LλN2+rLλN2-1rLλN2/R2+LλN1/R1LλN1+LλN2.

Metrics