Abstract

Optical emission spectroscopic studies of laser-created argon sparks are carried out. Pulses of 532 nm and 8 ns from a frequency-doubled Nd:YAG laser are used to create an argon spark at 1 atm. Gated photography of 2 ns is used to investigate spark evolution at early times. Electron temperature and density measurements are made from the spectral data. The Stark broadening of emission lines is used to determine the electron density, and the Boltzmann plot of the singly ionized argon-line intensities is exploited for determination of the electron temperature. The dependence on electron temperature and density on different experimental parameters, such as distance from the focal point, delay time after the initiation of the spark, and laser energy, are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
    [CrossRef]
  2. Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001).
    [CrossRef]
  3. Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
    [CrossRef]
  4. M. Longenecker, L. Huwel, L. Cadwell, D. Nassif, “Laser-generated spark morphology and temperature records from emission and Rayleigh scattering studies,” Appl. Opt. 42, 990–996 (2003).
    [CrossRef] [PubMed]
  5. L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  6. G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974).
    [CrossRef]
  7. T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975).
  8. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
    [CrossRef]
  9. X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
    [CrossRef]
  10. S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
    [CrossRef]
  11. L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
    [CrossRef]
  12. T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
    [CrossRef]
  13. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  14. J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
    [CrossRef]
  15. J. D. Hybl, G. A. Lithgow, S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003).
    [CrossRef] [PubMed]
  16. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
    [CrossRef]
  17. F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183–1189 (2003).
    [CrossRef] [PubMed]
  18. D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
    [CrossRef] [PubMed]
  19. J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of Arf-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
    [CrossRef] [PubMed]
  20. M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
    [CrossRef]
  21. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
    [CrossRef]
  22. G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, New York, 1976).
  23. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, New York, 1997).
    [CrossRef]
  24. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
    [CrossRef]
  25. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
    [CrossRef]
  26. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
    [CrossRef]
  27. C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density—measurements in a decaying laser-induced plasma using hydrogen α-profiles,” Appl. Opt. 34, 3325–3330 (1995).
    [CrossRef] [PubMed]
  28. L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004).
    [CrossRef]
  29. N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
    [CrossRef]
  30. L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969).
    [CrossRef]
  31. S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
    [CrossRef]
  32. T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
    [CrossRef]
  33. L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
    [CrossRef]
  34. NIST Atomic Spectra Database, http://physics.nist.gov .
  35. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

2004 (1)

L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004).
[CrossRef]

2003 (5)

M. Longenecker, L. Huwel, L. Cadwell, D. Nassif, “Laser-generated spark morphology and temperature records from emission and Rayleigh scattering studies,” Appl. Opt. 42, 990–996 (2003).
[CrossRef] [PubMed]

J. D. Hybl, G. A. Lithgow, S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003).
[CrossRef] [PubMed]

F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183–1189 (2003).
[CrossRef] [PubMed]

S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
[CrossRef]

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

2002 (1)

T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
[CrossRef]

2001 (3)

Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

2000 (1)

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

1999 (4)

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

1998 (2)

X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

1997 (3)

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
[CrossRef]

1995 (2)

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density—measurements in a decaying laser-induced plasma using hydrogen α-profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

1991 (1)

L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
[CrossRef]

1983 (1)

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

1974 (1)

G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974).
[CrossRef]

1969 (1)

L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969).
[CrossRef]

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

Bekefi, G.

G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, New York, 1976).

Bhawalkar, D. D.

L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Borucki, W. J.

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

Buckley, S. G.

Cadwell, L.

L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004).
[CrossRef]

M. Longenecker, L. Huwel, L. Cadwell, D. Nassif, “Laser-generated spark morphology and temperature records from emission and Rayleigh scattering studies,” Appl. Opt. 42, 990–996 (2003).
[CrossRef] [PubMed]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001).
[CrossRef]

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Cohen, R. B.

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

Cremers, D. A.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Dhareshwar, L. J.

L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
[CrossRef]

El-Nadi, L.

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

Evans, L. R.

L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969).
[CrossRef]

Faqis, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Fedosejevs, R.

X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
[CrossRef]

Ferioli, F.

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Fournier, E. W.

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

Gamal, Y.

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

Ghazoulin, B.

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, New York, 1997).
[CrossRef]

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

Hahn, D. W.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Hoffman, N. M.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Hughes, T. P.

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975).

Huwel, L.

L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004).
[CrossRef]

M. Longenecker, L. Huwel, L. Cadwell, D. Nassif, “Laser-generated spark morphology and temperature records from emission and Rayleigh scattering studies,” Appl. Opt. 42, 990–996 (2003).
[CrossRef] [PubMed]

Hybl, J. D.

Issac, R. C.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Jebens, D. S.

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

Kranzusch, S.

S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
[CrossRef]

Kunze, H. J.

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

Lakkaraju, H. S.

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

Lee, Y. I.

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001).
[CrossRef]

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density—measurements in a decaying laser-induced plasma using hydrogen α-profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

Lithgow, G. A.

Longenecker, M.

Loree, T. R.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Mann, K.

S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
[CrossRef]

McIlroy, A.

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

McKay, C. P.

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

McNeill, D. H.

T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
[CrossRef]

Miziolek, A. W.

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969).
[CrossRef]

Naik, P. A.

L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
[CrossRef]

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Nassif, D.

Navarro-Gonzalez, R.

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Omara, M. O.

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

Ostrovska, G. V.

G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974).
[CrossRef]

Parigger, C.

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density—measurements in a decaying laser-induced plasma using hydrogen α-profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

Peth, C.

S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
[CrossRef]

Plemmons, D. H.

Puzinauskas, P. V.

Radziemski, L. J.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Raga, A. C.

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sabour, K. A.

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

Shevelko, V. P.

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

Simeonsson, J. B.

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Sneddon, J.

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Sobral, H.

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Spiglanin, T. A.

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

Syage, J. A.

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

Tsakiris, G. D.

X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
[CrossRef]

Tsuda, N.

N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
[CrossRef]

Uchida, Y.

N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
[CrossRef]

Vallabhan, C. P. G.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Velazquez, P. F.

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

Villagran-Muniz, M.

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Wang, X. F.

X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
[CrossRef]

White, C. M.

T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Yamada, J.

N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Zaidel, A. N.

G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974).
[CrossRef]

Anal. Chem. (1)

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Anal. Lett. (1)

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Appl. Spectrosc. (2)

Combust. Flame (1)

T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Geophys. Res. Lett. (1)

D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

J. J. Appl. Phys. Part 1 (1)

N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997).
[CrossRef]

J. Phys. B (1)

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999).
[CrossRef]

J. Phys. D (1)

Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat Transfer (1)

L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Laser Part. Beams (1)

S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001).
[CrossRef]

Opt. Commun. (1)

X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998).
[CrossRef]

Opt. Exp. (1)

Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001).
[CrossRef]

Opt. Laser Eng. (1)

T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969).
[CrossRef]

Plasma Phys. Controlled Fusion (1)

M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003).
[CrossRef]

L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991).
[CrossRef]

Sov. Phys. Usp. (1)

G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974).
[CrossRef]

Spectrochim. Acta Part B (1)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Other (6)

G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, New York, 1976).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, New York, 1997).
[CrossRef]

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975).

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

NIST Atomic Spectra Database, http://physics.nist.gov .

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup used for imaging and emission studies of argon spark: ICCD, intensified charged coupled device; PTG, programmable timing generator; WP, wave plate; R, reflector; BS, beam sampler; L1, laser aplanet; L, lens.

Fig. 2
Fig. 2

Typical temporal profile of the laser pulse. The FWHM of the profile is ∼8 ns. The profile is temporally cleaned by an injection seeder.

Fig. 3
Fig. 3

Time evolution of visible emission from an argon spark recorded with an ICCD camera. The exposure time used was 2 ns. The laser energy used was 100 mJ, and background pressure was 1 atm. The timings in the images represent the time after the onset of spark formation. All the images are normalized to their maximum intensity. The smoothness of the sparks with time indicates the reproducibility.

Fig. 4
Fig. 4

Temporal evolution of the brightness taken from the images with time elapsed after the onset of spark. The spark emission peaked around 11 ns after the onset of plasma formation.

Fig. 5
Fig. 5

Typical time-resolved emission spectra recorded after the onset of spark evolution. These spectra are recorded 2 mm away from the focal point in the backward direction. The gate of the intensifier was set at 10 ns. Emission lines used for the Boltzmann plot are also given.

Fig. 6
Fig. 6

Typical Boltzmann plot used for estimating temperature. The Intensities of Ar+ lines are used, and other constants are in Table 1. The inverse slope of the best fit gives the temperature. This plot corresponds to time-integrated emission intensities recoded at the focal spot (laser energy, 100 mJ), which corresponds to a temperature of 2.25 ± 0.2 eV.

Fig. 7
Fig. 7

Stark-broadened profile of Ar+ transition at 480.6 nm at different times after the onset of spark. The FWHM of this line is used to infer electron density. The smooth curves represent the fitted Lorentzian curves. The measured Stark widths are also given.

Fig. 8
Fig. 8

Time evolution of electron temperature after the onset of spark formation. Positions -2 and -1, 2 and 1 mm toward the focusing lens from the focal point. The gate of the intensifier is set at 10 ns for these measurements.

Fig. 9
Fig. 9

Time evolution of density at different spatial points in the spark. Other experimental conditions are similar to Fig. 8.

Fig. 10
Fig. 10

Variation in temperature at different spatial points in the spark for various laser energies. All these measurements are done in a time-integrated manner. The delay and gate width are set at 50 and 500 ns, respectively. Axial position 0 corresponds to the focal point and the -ve and +ve numbers on the x-axis scale correspond to positions toward and away from the focusing lens.

Fig. 11
Fig. 11

Variation of density at different spatial points in the spark. The measurements are made in a time-integrated manner. All other experimental parameters are similar to Fig. 10.

Tables (1)

Tables Icon

Table 1 Spectroscopic Data of Ar+ Lines Employed for Temperature Determination

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nnm=nngmZexp-EmkT,
InmAnmnnmhcλnm=AnmnngmhcZλnmexp-EmkT,
Δλ1/2=2Wne1016Å,
ne1.4×1014Te1/2ΔE3cm-3,

Metrics