Abstract

The design features of, and first observations from, a new elastic backscatter lidar system at a wavelength of 1543 nm are presented. The transmitter utilizes stimulated Raman scattering in high-pressure methane to convert fundamental Nd:YAG radiation by means of the 1st Stokes shift. The wavelength-converting gas cell features multipass operation and internal fans. Unlike previous lidar developments that used Raman scattering in methane, the pump beam is not focused in the present configuration. This feature prevents optical breakdown of the gas inside the cell. Additionally, the gas cell is injection seeded by a diode to improve conversion efficiency and beam quality. The receiver uses a 40.6-cm-diameter telescope and a 200-μm InGaAs avalanche photodiode. The system is capable of operating in a dual-wavelength mode (1064 and 1543 nm simultaneously) for comparison or in a completely eye-safe mode. The system is capable of transmitting an energy of more than 200 mJ/pulse at 10 Hz. Aerosol backscatter data from vertical and horizontal pointing periods are shown.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
    [CrossRef]
  2. American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000” (American National Standards Institute, New York, 2000), p. 163.
  3. M. S. Webb, P. F. Moulton, J. J. Kasinski, R. I. Burnham, G. Loiacono, R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23, 1161–1163 (1998).
    [CrossRef]
  4. S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
    [CrossRef]
  5. H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
    [CrossRef]
  6. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
    [CrossRef]
  7. G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996).
    [CrossRef]
  8. W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994).
    [CrossRef]
  9. E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-μm eyesafe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
    [CrossRef] [PubMed]
  10. N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.
  11. E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.
  12. G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
    [CrossRef]
  13. “High-Energy, Eyesafe Lidar for Long-Range, High-Resolution Aerosol Detection,” final report for period from 22 March 1995 to 31 December 1997, [Phase II, Small Business Innovative Research (SBIR)], prepared for NASA Langley Research Center by Research Division, Schwartz Elecro-Optics, Inc., 135 South Road, Bedford, Mass. 01730.
  14. S. R. Harrell, “Atmospheric laser radar measurements using two novel, eye-safe infrared optical parametric oscillators,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1995).
  15. S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
    [CrossRef]
  16. I. Acharekar, M., Schwartz Electro-Optics, 3259 Progress Drive, Orlando, Fla. 32826 (personal communication, 2003).
  17. D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
    [CrossRef]
  18. S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).
  19. P. Mamidipudi, D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO Atmospheric Lidar,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 327–335 (1999).
    [CrossRef]
  20. T. F. J. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–183 (May1990).
  21. A. Anderson, The Raman Effect (Marcel Dekker, New York, 1971).
  22. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5042 (1997).
    [CrossRef] [PubMed]
  23. A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
    [CrossRef]
  24. J. G. Wessell, K. Repasky, L. J. Carlsten, “Efficient seeding of a Raman amplifier with a visible laser diode,” Opt. Lett. 19, 1430–1432 (1994).
    [CrossRef]
  25. G. R. Gray, F. Pratte, “An eye-safety radar for lidar operations,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.9.
  26. F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.
  27. V. Simeonov, V. Mitev, H. van de Bergh, B. Calpini, “Raman frequency shifting in a CH4:H2:Ar mixture pumped by the fourth harmonic of a Nd:YAG laser,” Appl. Opt. 37, 7112–7115 (1998).
    [CrossRef]

2003 (1)

G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
[CrossRef]

2002 (1)

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

1998 (2)

1997 (2)

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5042 (1997).
[CrossRef] [PubMed]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

1996 (1)

G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996).
[CrossRef]

1994 (4)

W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994).
[CrossRef]

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

J. G. Wessell, K. Repasky, L. J. Carlsten, “Efficient seeding of a Raman amplifier with a visible laser diode,” Opt. Lett. 19, 1430–1432 (1994).
[CrossRef]

1993 (2)

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

1990 (1)

T. F. J. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–183 (May1990).

1989 (1)

Acharekar, I.

I. Acharekar, M., Schwartz Electro-Optics, 3259 Progress Drive, Orlando, Fla. 32826 (personal communication, 2003).

Anderson, A.

A. Anderson, The Raman Effect (Marcel Dekker, New York, 1971).

Anstett, G.

G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
[CrossRef]

Baird, W.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Battle, R.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Bitter, M.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Borsutzky, A.

G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
[CrossRef]

Brucker, J. P.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Bufton, J. L.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

Burnham, R. I.

Busse, J.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Calpini, B.

Carlsten, L. J.

Carnuth, W.

W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994).
[CrossRef]

Cavanaugh, J. F.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

Chudamani, S.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

Chyba, T. H.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

de Schoulepnikoff, L.

Dennis, W. M.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Edmondson, M.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Eilers, H.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Fox, J.

F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.

Futrell, A.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Gimmestad, G. G.

E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-μm eyesafe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
[CrossRef] [PubMed]

E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.

Gimmestad, S. C.

E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.

Gong, W.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Grace, W. K.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Gray, G. R.

G. R. Gray, F. Pratte, “An eye-safety radar for lidar operations,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.9.

F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.

Harper, D.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Harrell, S. R.

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

S. R. Harrell, “Atmospheric laser radar measurements using two novel, eye-safe infrared optical parametric oscillators,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1995).

Harrison, R. F.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Haughton, L.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Higdon, N. S.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Huber, G.

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Hummel, S. G.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Hungate, W. S.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Jia, W.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Johnson, D.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Johnston, T. F. J.

T. F. J. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–183 (May1990).

Kang, Y.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Karl, R. R.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Kasinski, J. J.

Kazzaz, A.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Killinger, D.

P. Mamidipudi, D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO Atmospheric Lidar,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 327–335 (1999).
[CrossRef]

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

Kück, S.

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Kurnit, N. A.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Lewis, K.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Lo, Y. H.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Loiacono, G.

Mages, P.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Mamidipudi, P.

P. Mamidipudi, D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO Atmospheric Lidar,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 327–335 (1999).
[CrossRef]

Mathieu, P.

G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996).
[CrossRef]

Mitev, V.

Moulton, P. F.

Pan, Z.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Patterson, E. M.

E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-μm eyesafe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
[CrossRef] [PubMed]

E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.

Pauchard, A.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Payne-Baggott, R. S.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Petermann, K.

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Peterson, O. G.

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

Ponsardin, P.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Pratte, F.

F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.

G. R. Gray, F. Pratte, “An eye-safety radar for lidar operations,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.9.

Ravnitsky, G.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Repasky, K.

Richter, D. A.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Rines, G. A.

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

Roberts, D. W.

E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-μm eyesafe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
[CrossRef] [PubMed]

E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.

Roy, G.

G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996).
[CrossRef]

Ruschin, S.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Sanchez, D.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Schönhoff, U.

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

Schwarz, R.

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

Shoshan, I.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Simeonov, V.

Spinhirne, J. D.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

Stolzenberger, R.

Temple, D. A.

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

Trickl, T.

W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994).
[CrossRef]

van de Bergh, H.

van den Bergh, H.

Wallenstein, R.

G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
[CrossRef]

Webb, M. S.

Wessell, J. G.

Wilcox, W.

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

Yen, W. M.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Yu, K. L.

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

Appl. Opt. (3)

Appl. Optics (1)

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997).
[CrossRef]

Appl. Phys. B (2)

S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994).
[CrossRef]

G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

IEEE LEOS Newsletter (1)

S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).

IEEE Trans. Geosci. Remote Sens. (1)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

Laser Focus World (1)

T. F. J. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–183 (May1990).

Opt. Eng. (1)

G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994).
[CrossRef]

Other (12)

N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.

E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.

American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000” (American National Standards Institute, New York, 2000), p. 163.

A. Anderson, The Raman Effect (Marcel Dekker, New York, 1971).

P. Mamidipudi, D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO Atmospheric Lidar,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 327–335 (1999).
[CrossRef]

“High-Energy, Eyesafe Lidar for Long-Range, High-Resolution Aerosol Detection,” final report for period from 22 March 1995 to 31 December 1997, [Phase II, Small Business Innovative Research (SBIR)], prepared for NASA Langley Research Center by Research Division, Schwartz Elecro-Optics, Inc., 135 South Road, Bedford, Mass. 01730.

S. R. Harrell, “Atmospheric laser radar measurements using two novel, eye-safe infrared optical parametric oscillators,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1995).

S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995).
[CrossRef]

I. Acharekar, M., Schwartz Electro-Optics, 3259 Progress Drive, Orlando, Fla. 32826 (personal communication, 2003).

D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002).
[CrossRef]

G. R. Gray, F. Pratte, “An eye-safety radar for lidar operations,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.9.

F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Maximum eye-safe energy versus wavelength for a 10-mm beam at 10 Hz with a 6-ns pulse duration. PRF, pulse repetition frequency.

Fig. 2
Fig. 2

Schematic of the system with a Newtonian telescope. The data presented in this paper were collected with a Schmidt-Cassegrain telescope, but we plan to use the simpler geometry of the Newtonian in the future.

Fig. 3
Fig. 3

Input pump energy versus Stokes energy conversion efficiency. The filled and open symbols represent the injection seeder on and off, respectively.

Fig. 4
Fig. 4

Stokes energy conversion efficiency versus Raman cell pressure. Three gain lengths are shown, for three-, five-, and seven-pass configurations. Filled and open symbols represent the injection seeder on and off, respectively. The pump energy was 750 mJ in 6 ns.

Fig. 5
Fig. 5

Stokes energy conversion efficiency versus Raman cell pressure. Two repetition rates are shown: squares, 5 Hz; circles, 10 Hz. The error bars represent the standard deviation of 600 shots. Filled symbols and darker lines, injection seeder on; open symbols and lighter lines, injection seeder off. The pump energy was 800 mJ in 6 ns.

Fig. 6
Fig. 6

Ray trace of a receiver using a Schmidt-Cassegrain telescope.

Fig. 7
Fig. 7

Time-versus-altitude images of backscatter intensity from the 1543-nm channel and the 1064-nm channel. The data were collected on 10 July 2003 at Boulder, Colorado.

Fig. 8
Fig. 8

Time-versus-range images of backscatter intensity from the 1543-nm channel. The data were collected on 18 July 2003 at Boulder, Colorado, while the beam was pointing approximately 3° above the horizon.

Tables (2)

Tables Icon

Table 1 Characteristics of Our Experimental Lidar System

Tables Icon

Table 2 Factors That Influence Range Resolution

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Θ=M22λπw0,
ISz=IS0expgRIpz,
λnS=1λp-nλR-1, λnAS=1λp+nλR-1,

Metrics