Abstract

We reanalyze the effects of atmosphere-induced image motions on the measurement of solar polarized light using a formalism developed by Lites. Our reanalysis is prompted by the advent of adaptive optics (AO) systems that reduce image motion and higher-order aberrations, by the availability of liquid crystals as modulation devices, and by the need to understand how best to design polarimeters for future telescopes such as the Advanced Technology Solar Telescope. In this first attempt to understand the major issues, we analyze the influence of residual image motion (tip-tilt) corrections of operational AO systems on the cross talk between Stokes parameters and present results for several polarization analysis schemes. Higher-order wave-front corrections are left for future research. We also restrict our discussion to the solar photosphere, which limits several important parameters of interest, using some recent magnetoconvection simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precision in ground-based solar polarimetry: simulating the role of adaptive optics

Nagaraju Krishnappa and Alex Feller
Appl. Opt. 51(33) 7953-7961 (2012)

Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower

Chenglin Xu, Zhongquan Qu, Xiaoyu Zhang, Chunlan Jin, and Xiaoli Yan
Appl. Opt. 45(33) 8428-8433 (2006)

Error propagation in polarimetric demodulation

A. Asensio Ramos and M. Collados
Appl. Opt. 47(14) 2541-2549 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription