Abstract

Fourier-domain holography (FDH) is investigated as a candidate for holographic optical coherence imaging to produce real-time images of structure inside living tissue and turbid media. The effects of spatial filtering, the background intensity distributions, and the role of background noise in determining dynamic range are evaluated for both FDH and image-domain holography (IDH). The grating washout effect in FDH (edge enhancement) is removed by use of a vibrating diffuser that consequently improves the image quality. By comparing holographic images and background images of FDH and IDH we show that FDH provides a higher dynamic range and a higher image quality than IDH for this specific application of imaging diffuse volumetric objects.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
    [CrossRef] [PubMed]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  5. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
    [CrossRef]
  6. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
    [CrossRef]
  7. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
    [CrossRef]
  8. M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
    [CrossRef]
  9. P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
    [CrossRef]
  10. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
    [CrossRef]
  11. G. W. Stroke, D. Brumm, A. Funkhouser, “Three-dimensional holography with ‘lensless’ Fourier-transform holograms and coarse P/N polaroid film,” J. Opt. Soc. Am. 55, 1327–1328 (1965).
    [CrossRef]
  12. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992).
    [CrossRef] [PubMed]
  13. C. B. Burckhardt, “Use of random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef] [PubMed]
  14. W. J. Dallas, “Deterministic diffusers for holography,” Appl. Opt. 12, 1179–1187 (1973).
    [CrossRef] [PubMed]
  15. M. Kato, Y. Nakayama, T. Suzuki, “Speckle reduction in holography with a spatially incoherent source,” Appl. Opt. 14, 1093–1099 (1975).
    [CrossRef] [PubMed]
  16. E. N. Leith, J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  17. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
    [CrossRef]
  18. D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
    [CrossRef]
  19. D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
    [CrossRef]
  20. Q. N. Wang, R. M. Brubaker, D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
    [CrossRef]
  21. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
    [CrossRef]

2003 (2)

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

2001 (1)

D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
[CrossRef]

2000 (1)

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

1999 (2)

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

1998 (2)

1996 (1)

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1975 (1)

1973 (1)

1970 (1)

1965 (1)

1964 (1)

Ansari, Z.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Balasubramanian, S.

D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
[CrossRef]

Barry, N. P.

Boyer, K.

Brubaker, R. M.

Brumm, D.

Burckhardt, C. B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cullen, D.

Dainty, J. C.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Dallas, W. J.

DeVelis, J. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
[CrossRef]

Dunsby, C.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

French, P.

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

French, P. M. W.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Funkhouser, A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, Y.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Haddad, W. S.

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

Izatt, J. A.

Jones, R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

Kato, M.

Klein, M. B.

Kulkarni, M. D.

Kwolek, K. M.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

Kwolek, K. W.

Leith, E. N.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Longworth, J. W.

Lynn, M. J.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

McPherson, A.

Melloch, M.

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

Melloch, M. R.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

Mustata, M.

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

Nakayama, Y.

Nolte, D.

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

Nolte, D. D.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

Parrent, G. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
[CrossRef]

Peng, L.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reynolds, G. O.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
[CrossRef]

Rhodes, C. K.

Rollins, A. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Solem, J. C.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stroke, G. W.

Suzuki, T.

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Thompson, B. J.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
[CrossRef]

Turek, J. J.

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

Tziraki, M.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

Ung-arunyawee, R.

Upatnieks, J.

Wang, Q. N.

Wechsler, B. A.

Yazdanfar, S.

Yu, P.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

Appl. Phys. Lett (1)

M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
[CrossRef]

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic figures of (a) IDH and (b) FDH.

Fig. 2
Fig. 2

Direct image of PRQW device BH45, showing several types of defect (labeled A–C) and the corresponding background caused by scattering of the reference beam in the direction of the reconstruction optics and camera.

Fig. 3
Fig. 3

Schematic figures of the background formation at the CCD camera by the beam scattered from defects in the PRQW film in (a) IDH and (b) FDH. Strong scattering from a localized defect at the film produces a broad low-intensity background in FDH.

Fig. 4
Fig. 4

Scattered background images and the corresponding 3D plots of intensity for a beam ratio β = 0.2: (a) IDH with a scale of 255 digital numbers and (b) FDH with a scale of 6 digital numbers for the same device.

Fig. 5
Fig. 5

Experimental setup used to record and reconstruct holograms by use of a vibrating diffuser inserted in front of the USAF test chart: BS, beam splitter; M, mirrors; L1, L2, lenses; A, zero-order aperture; P, pinhole; V, voltage.

Fig. 6
Fig. 6

(a) Direct images of 111-μm-wide bars in a USAF test chart formed by the signal beam without the PRQW device in IDH. (b) Modified direct image of (a) in which zero intensity of the direct image is mapped to white color. Modified direct image transmitted through the PRQW device in (c) an IDH configuration and (d) FDH configuration.

Fig. 7
Fig. 7

Holographic reconstructions of a USAF test chart in FDH without a diffuser at fringe spacing Λ = 6 μm and beam ratios (a) β = 4, (b) β = 0.2, and (c) β = 0.01.

Fig. 8
Fig. 8

Images of the optical Fourier transform of a USAF test chart viewed through a PRQW device in FDH (a) without a diffuser and (b) with a vibrating diffuser. (c) Associated intensity line plot at a vertical pixel value of 120 of (b); (b) is the average speckle image during the integration time of the CCD camera.

Fig. 9
Fig. 9

Holographic reconstructions of a USAF test chart with a vibrating diffuser. Beam ratios are (a) β = 4, (b) β = 0.2, (c) β = 0.4 in IDH and (d) β = 4, (e) β = 0.2, (f) β = 0.01 in FDH; both reconstructions are at a fringe spacing Λ = 6 μm.

Fig. 10
Fig. 10

Horizontal MTFs. (a) FDH for devices with 1-mm window apertures (PLO2) compared with 2-mm window apertures (BH45), showing the effect of Fourier filtering by the smaller window. (b) Comparison of IDH with FDH in a 2-mm device, showing the reduced spatial resolution for FDH with the current setup.

Fig. 11
Fig. 11

Background images and the corresponding background-subtracted images in (a) and (b) for IDH and in (d) and (e) for FDH with a vibrating diffuser at beam ratio β = 4. (c), (f) Associated intensity line plots as a function of horizontal pixel value at a vertical pixel of 108. (b), (e) Images after the corresponding backgrounds are subtracted from Figs. 9 (a) and 9 (d), respectively. The squares in (b) and (e) show the region where the ratio of the dynamic ranges of FDH to IDH is measured, the circle in (c) shows the region where the intensity is abruptly decreased because of a defect.

Fig. 12
Fig. 12

Background-subtracted holographic images from the FDH results of Fig. 9, showing the associated intensity line plots at a vertical pixel value of 108 at beam ratios β = 4, 0.2, 0.01 in (a), (b), (c), respectively, with a vibrating diffuser.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

gx, y=fx, y hx, y=-- fx, yhx-x, y-ydxdy,
hx, y=πD24fλ22J1πDρ/2fλπDρ/2fλ, ρ=x2+y21/2,
hx, y=-1fλ2exp-i4πfλ×exp-i πx2+y2fλP1xfλ, yfλ,
gx, y=ifλexp-i4πf/λFxλf, yλf,
Ix, y=Irx, y+Isx, y1+mx, ycosK · r,
mx, y=2Irx, yIsx, y1/2Irx, y+Isx, y=2βx, y1+βx, y,
miΛ=2mξΛ2Λc2+Λ2,
Id=ηpmi2IT2IT+Isat2 Ir,
ICCD=ηpmi2Ir+ηscatIT+Itr.
IscatIDH/IscatFDH=ηscatIDH/ηscatFDH=πd2/16Ad.
kmaxFDH/kmaxIDH=πd2/16Ad.

Metrics