Abstract

Far-infrared laser calorimetry was used to measure the absorptivity, and thus the emissivity, of aluminum-coated silicon carbide mirror samples produced during the coating qualification run of the Herschel Space Observatory telescope to be launched by the European Space Agency in 2007. The samples were measured at 77 K to simulate the operating temperature of the telescope in its planned orbit about the second Lagrangian point, L2, of the Earth-Sun system. Together, the telescope’s equilibrium temperature in space and the emissivity of the mirror surfaces will determine the far-infrared-submillimeter background and thus the sensitivity of two of the three astronomical instruments aboard the observatory if stray-light levels can be kept low relative to the mirror emission. Absorptivities of both clean and dust-contaminated samples were measured at 70, 118, 184, and 496 μm. Theoretical fits to the data predict absorptivities of 0.2–0.4% for the clean sample and 0.2–0.8% for the dusty sample, over the spectral range of the Herschel Space Observatory instruments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
    [CrossRef]
  2. G. Pilbratt, “Herschel Space Observatory mission overview,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 586–597 (2003).
    [CrossRef]
  3. A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 662–673 (2003).
    [CrossRef]
  4. M. Griffin, B. Swinyard, L. Vigroux, “SPIRE—Herschel’s submillimetre camera and spectrometer,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 686–696 (2003).
    [CrossRef]
  5. W. L. Wolfe, “Radiation theory,” in Sources of Radiation, G. J. Zissis, ed., Vol. 1 of The Infrared Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (ERIM, Ann Arbor, Mich., 1993), pp. 1–48.
  6. A. J. Gatesman, R. H. Giles, J. Waldman, “High-precision reflectometer for submillimeter wavelengths,” J. Opt. Soc. Am. B 12, 212–219 (1995).
    [CrossRef]
  7. J. J. Bock, M. K. Parikh, M. L. Fischer, A. E. Lange, “Emissivity measurements of reflective surfaces at near-millimeter wavelengths,” Appl. Opt. 34, 4812–4816 (1995).
    [CrossRef] [PubMed]
  8. O. Schmeitzky, “Particle contamination simulation on SCI-sample-wafer Herschel-Planck project,” internal rep. TOS-QMC 2003/134 (European Space Research and Technology Center, Noordwijk, The Netherlands, 2003).
  9. T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
    [CrossRef]
  10. T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).
  12. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Essex, UK, 1995).
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  14. B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
    [CrossRef]

1995 (2)

1984 (1)

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

Blok, J. H.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

Bock, J. J.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

de Chambure, D.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Deny, P.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Draine, B. T.

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

Duran, M.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Fischer, J.

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Fischer, M. L.

Gatesman, A. J.

Geis, N.

A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 662–673 (2003).
[CrossRef]

Giles, R. H.

Griffin, M.

M. Griffin, B. Swinyard, L. Vigroux, “SPIRE—Herschel’s submillimetre camera and spectrometer,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 686–696 (2003).
[CrossRef]

Hovenier, J. N.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Jakob, G.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Kaye, G. W. C.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Essex, UK, 1995).

Klaassen, T. O.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Laby, T. H.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Essex, UK, 1995).

Lange, A. E.

Lee, H. M.

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

Parikh, M. K.

Passvogel, T.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Pilbratt, G.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

G. Pilbratt, “Herschel Space Observatory mission overview,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 586–597 (2003).
[CrossRef]

Poglitsch, A.

A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 662–673 (2003).
[CrossRef]

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Rosenthal, D.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

Safa, F.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Schmeitzky, O.

O. Schmeitzky, “Particle contamination simulation on SCI-sample-wafer Herschel-Planck project,” internal rep. TOS-QMC 2003/134 (European Space Research and Technology Center, Noordwijk, The Netherlands, 2003).

Sein, E.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

Sternberg, O.

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

Swinyard, B.

M. Griffin, B. Swinyard, L. Vigroux, “SPIRE—Herschel’s submillimetre camera and spectrometer,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 686–696 (2003).
[CrossRef]

Toulemont, Y.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Vigroux, L.

M. Griffin, B. Swinyard, L. Vigroux, “SPIRE—Herschel’s submillimetre camera and spectrometer,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 686–696 (2003).
[CrossRef]

Waelkens, C.

A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 662–673 (2003).
[CrossRef]

Waldman, J.

Wildeman, K. J.

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

Wolfe, W. L.

W. L. Wolfe, “Radiation theory,” in Sources of Radiation, G. J. Zissis, ed., Vol. 1 of The Infrared Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (ERIM, Ann Arbor, Mich., 1993), pp. 1–48.

Appl. Opt. (1)

Astrophys. J. (1)

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (11)

O. Schmeitzky, “Particle contamination simulation on SCI-sample-wafer Herschel-Planck project,” internal rep. TOS-QMC 2003/134 (European Space Research and Technology Center, Noordwijk, The Netherlands, 2003).

T. O. Klaassen, J. H. Blok, J. N. Hovenier, G. Jakob, D. Rosenthal, K. J. Wildeman, “Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 788–796 (2003).
[CrossRef]

T. O. Klaassen, J. N. Hovenier, J. Fischer, G. Jakob, A. Poglitsch, O. Sternberg, “THz calorimetry: an absolute power meter for terahertz radiation and the absorptivity of the Herschel Space Observatory telescope mirror coating,” in Terahertz and Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE5354 (to be published).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Essex, UK, 1995).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, G. Pilbratt, “A Φ 3.5 M SiC telescope for Herschel mission,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 606–618 (2003).
[CrossRef]

G. Pilbratt, “Herschel Space Observatory mission overview,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 586–597 (2003).
[CrossRef]

A. Poglitsch, C. Waelkens, N. Geis, “The Photodetector Array Camera Spectrometer (PACS) for the Herschel Space Observatory,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 662–673 (2003).
[CrossRef]

M. Griffin, B. Swinyard, L. Vigroux, “SPIRE—Herschel’s submillimetre camera and spectrometer,” in IR Space Telescopes and Instruments, J. Mather, ed., Proc. SPIE4850, 686–696 (2003).
[CrossRef]

W. L. Wolfe, “Radiation theory,” in Sources of Radiation, G. J. Zissis, ed., Vol. 1 of The Infrared Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (ERIM, Ann Arbor, Mich., 1993), pp. 1–48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of a sample and a sample carrier mounted in the sample housing.

Fig. 2
Fig. 2

Schematic drawing of the optical configuration used for the measurements. Sliding and flip mirrors are inserted into the beam for power calibration and beam profile verification, respectively, as shown.

Fig. 3
Fig. 3

Photograph of the optical layout, including the front end of the FIR laser at the extreme right.

Fig. 4
Fig. 4

Photograph of the open cryostat cold plate and sample housing. The laser beam enters through the cryostat window (left), passes through the aperture in the absorbing screen, and is reflected by the tilted sample back onto the absorbing screen.

Fig. 5
Fig. 5

Typical heating curve for a clean mirror sample at 77 K. The increase in lock-in amplifier signal corresponds to a temperature rise of ∼300 mK with a thermal time constant of ∼7 min and has a noise level of ∼0.6 mK (rms).

Fig. 6
Fig. 6

Measurements and estimated uncertainties for the clean mirror samples. Because there were no significant differences in the measurements for the two clean samples, the average values are shown. The dotted curve is the absorptivity expected for a pure aluminum mirror based on the Hagen-Rubens11 formula and the resistivity12 of aluminum at 77 K. The dashed curve shows the best fit to the data, excluding the measurement at 496 μm, with resistivity taken as a free parameter (see text).

Fig. 7
Fig. 7

Measurements and estimated uncertainties for the dusty mirror sample. The dashed curve shows the best fit to the clean mirror sample (see Fig. 6), and the solid curve shows the best fit to the dusty mirror data (excluding the measurement at 496 μm) using the sum of the clean mirror fit and a λ-1 absorptivity dependence for the dust (see text).

Tables (2)

Tables Icon

Table 1 Number and Size Distribution of Dust Particlesa

Tables Icon

Table 2 Absorptivities (%) of the Three Measured Samples at 77 K

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε=α=Pabs/P0=PH/P0.
α=0.0336λ-0.5+0.273λ-1.

Metrics