Abstract

When the finite-difference time-domain (FDTD) method is applied to light-scattering computations, the far fields can be obtained by means of integrating the near fields either over the volume bounded by the particle’s surface or on a regular surface encompassing the scatterer. For light scattering by a sphere, the accurate near-field components on the FDTD-staggered meshes can be computed from the rigorous Lorenz-Mie theory. We investigate the errors associated with these near- to far-field transform methods for a canonical scattering problem associated with spheres. For a scatterer with a small refractive index, the surface-integral approach is more accurate than its volume counterpart for computation of the phase functions and extinction efficiencies; however, the volume-integral approach is more accurate for computation of other scattering matrix elements, such as P 12, P 33, and P 43, especially for backscattering. If a large refractive index is involved, the results computed from the volume-integration method become less accurate, whereas the surface method still retains the same order of accuracy as in the situation for the small refractive index.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription