Abstract

For a polydisperse nanoparticle ensemble the evaluation of time-resolved laser-induced incandescence (LII) measurements yields a weighted average value for the primary nanoparticle size. Although this value is sufficient for narrow size distributions, a comprehensive characterization of a particle-evolution process requires the reconstruction of the size distribution. An easy-to-use online approach is presented to evaluate the LII signal regarding higher moments of the distribution. One advantage of this approach is that the size distribution results in a deceleration of the LII signal decay with time after the laser pulse. Therefore LII signal-decay curves are evaluated in two different time intervals after the laser pulse, providing information about the desired distribution parameters that has been tested successfully with experimental curves taken in different soot-formation processes.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
    [CrossRef]
  2. Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
    [CrossRef]
  3. A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003).
    [CrossRef]
  4. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  5. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  6. S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  7. S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
    [CrossRef]
  8. A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).
  9. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  10. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
    [CrossRef]
  11. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2207 (1984).
    [CrossRef] [PubMed]
  12. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper Series930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  13. S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
    [CrossRef]
  14. A. Leipertz, “Transport properties of transparent liquids by photon-correlation spectroscopy,” Int. J. Thermophys. 9, 897–909 (1988).
    [CrossRef]
  15. A. Leipertz, “Determination of the thermophysical properties of transparent fluids by laser spectroscopy,” Int. Chem. Eng. 34, 188–197 (1994).
  16. A. Leipertz, A. P. Fröba, “Diffusion measurements in fluids by dynamic light scattering,” in Diffusion in Condensed Matter— Methods, Materials, Models, J. Kärger, P. Heitjans, eds. (Springer, Berlin, 2004), Chap. 15, pp. 571–611.
  17. R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
    [CrossRef]
  18. F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
    [CrossRef]
  19. K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
    [CrossRef]
  20. H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
    [CrossRef]
  21. R. Fisker, “Estimation of nanoparticle size distributions by image analysis,” J. Nanoparticle Res. 2, 267–277 (2000).
    [CrossRef]
  22. S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  23. E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

2003 (2)

A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003).
[CrossRef]

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

2002 (2)

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

2000 (1)

R. Fisker, “Estimation of nanoparticle size distributions by image analysis,” J. Nanoparticle Res. 2, 267–277 (2000).
[CrossRef]

1997 (1)

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

1996 (1)

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

1995 (3)

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

1994 (1)

A. Leipertz, “Determination of the thermophysical properties of transparent fluids by laser spectroscopy,” Int. Chem. Eng. 34, 188–197 (1994).

1988 (1)

A. Leipertz, “Transport properties of transparent liquids by photon-correlation spectroscopy,” Int. J. Thermophys. 9, 897–909 (1988).
[CrossRef]

1987 (1)

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

1984 (2)

K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
[CrossRef]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2207 (1984).
[CrossRef] [PubMed]

Adelhelm, C.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Arndt, J.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

Bockhorn, H.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

Carvalho, M. G.

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Chen, H.

K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
[CrossRef]

D’Alfonso, N.

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

Dankers, S.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003).
[CrossRef]

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

Dobbins, R. A.

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

Faeth, G. M.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Farias, T. L.

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Fetting, F.

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

Filippov, A. V.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Fisker, R.

R. Fisker, “Estimation of nanoparticle size distributions by image analysis,” J. Nanoparticle Res. 2, 267–277 (2000).
[CrossRef]

Fröba, A. P.

A. Leipertz, A. P. Fröba, “Diffusion measurements in fluids by dynamic light scattering,” in Diffusion in Condensed Matter— Methods, Materials, Models, J. Kärger, P. Heitjans, eds. (Springer, Berlin, 2004), Chap. 15, pp. 571–611.

Geitlinger, H.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Gieseke, J. A.

K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
[CrossRef]

Greenberg, P. S.

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Griffin, D. W.

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Hemm, A.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

Hofeldt, D. L.

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper Series930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Jacob, E.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Jungfleisch, B.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Köylü, Ü. Ö.

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Ku, J. C.

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Lee, K. W.

K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
[CrossRef]

Lehre, T.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Leipertz, A.

A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003).
[CrossRef]

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

A. Leipertz, “Determination of the thermophysical properties of transparent fluids by laser spectroscopy,” Int. Chem. Eng. 34, 188–197 (1994).

A. Leipertz, “Transport properties of transparent liquids by photon-correlation spectroscopy,” Int. J. Thermophys. 9, 897–909 (1988).
[CrossRef]

A. Leipertz, A. P. Fröba, “Diffusion measurements in fluids by dynamic light scattering,” in Diffusion in Condensed Matter— Methods, Materials, Models, J. Kärger, P. Heitjans, eds. (Springer, Berlin, 2004), Chap. 15, pp. 571–611.

A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Megaridis, C. M.

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

Melton, L. A.

Messerer, A.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Meyer, U.

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

Müllen, K.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Müller, J.-O.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Nießner, R.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Pöschl, U.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Reck, R.

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

Roma, J.

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Roth, P.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Rothe, D.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Schlögl, R.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Schön, A.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Schraml, S.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Simpson, C.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Streibel, T.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Su, D. S.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Sunderland, B.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Suntz, R.

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Tomovic, Z.

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Vogel, K.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

Wannemacher, G.

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

Will, S.

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Xu, F.

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Zens, T.

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

Aerosol Sci. Technol. (1)

K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984).
[CrossRef]

Appl. Opt. (1)

Chem. Eng. Technol. (2)

S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002).
[CrossRef]

S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003).
[CrossRef]

Combust. Flame (3)

J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Int. Chem. Eng. (1)

A. Leipertz, “Determination of the thermophysical properties of transparent fluids by laser spectroscopy,” Int. Chem. Eng. 34, 188–197 (1994).

Int. J. Thermophys. (1)

A. Leipertz, “Transport properties of transparent liquids by photon-correlation spectroscopy,” Int. J. Thermophys. 9, 897–909 (1988).
[CrossRef]

J. Aerosol Sci. (1)

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Nanoparticle Res. (1)

R. Fisker, “Estimation of nanoparticle size distributions by image analysis,” J. Nanoparticle Res. 2, 267–277 (2000).
[CrossRef]

Langmuir (1)

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002).
[CrossRef]

Other (8)

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper Series930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).

H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147.
[CrossRef]

A. Leipertz, A. P. Fröba, “Diffusion measurements in fluids by dynamic light scattering,” in Diffusion in Condensed Matter— Methods, Materials, Models, J. Kärger, P. Heitjans, eds. (Springer, Berlin, 2004), Chap. 15, pp. 571–611.

S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).

E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Deviation of the calculated LII signal decay of a polydisperse particle collective (log-normal, d p,med = 14 nm, σ = 0.4) from the monoexponential trend for times after the laser pulse when heat conduction dominates the energy loss.

Fig. 2
Fig. 2

Log-normal primary particle-size distributions yielding the same mean particle diameter achieved by evaluating the TIRE-LII signal under the assumption of a monodisperse particle collective with d p,mono = 29.2 nm.

Fig. 3
Fig. 3

Representation of d p,med = f(T U , τ1, τ2) and σ = f(T U , τ1, τ2) for an ambient temperature of 1000 K.

Fig. 4
Fig. 4

Experimental curve obtained in a carbon-black reactor with two fits in different time intervals in order to determine the particle-size distribution.

Fig. 5
Fig. 5

Reconstructed primary particle-size distribution achieved by evaluation of the experimental curve shown in Fig. 4.

Fig. 6
Fig. 6

Calculated temporal evolution of the signal-decay times for differently distributed particle ensembles.

Fig. 7
Fig. 7

Comparison of the primary particle-size distributions obtained by LII measurements and TEM analysis in redispersed Degussa carbon blacks.

Fig. 8
Fig. 8

Comparison of the primary soot particle-size distributions measured by LII and TEM in the raw exhaust gas of a heavy duty diesel engine.

Tables (1)

Tables Icon

Table 1 Sensitivity of Signal-Decay Times on Distribution Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SLII  dp3+λ/0.154,
Pdp=12πdpσexp-lndp-lndp,med22σ2,

Metrics