Abstract

Porous dielectric thin films, composed of isolated helical columns, are fabricated by the glancing angle deposition technique. The selective reflection of circularly polarized light and the optical rotation of linearly polarized light are investigated as a function of film material and helical morphology. The strongest chiral optical response is observed for titanium-dioxide films because of its large refractive index. Optical rotatory powers as high as 4.5° are observed in 830-nm-thick helical films. By tailoring the pitch of the helical columns, the wavelength dependence of the circular reflection band is tuned to preferentially reflect red, green, or blue light, a promising quality for display applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
    [CrossRef]
  2. A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995).
    [CrossRef]
  3. R. M. A. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
    [CrossRef]
  4. K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
    [CrossRef]
  5. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
    [CrossRef]
  6. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  7. I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
    [CrossRef]
  8. P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
    [CrossRef]
  9. A. Lakhtakia, “Dielectric sculptured thin films for polarization-discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
    [CrossRef]
  10. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [CrossRef]
  11. Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
    [CrossRef]
  12. V. H. Zocher, “Optische anisotropie selektiv absorbierender stoffe,” Naturwissenschaften 13, 1015–1021 (1925).
    [CrossRef]
  13. F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386–388 (1973).
    [CrossRef]
  14. J. L Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173–174 (1972).
    [CrossRef]
  15. W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
    [CrossRef]
  16. K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
    [CrossRef]
  17. J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
    [CrossRef]
  18. S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
    [CrossRef]
  19. C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
    [CrossRef]
  20. R. A. M. Hikmet, H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature (London) 392, 476–479 (1998).
    [CrossRef]
  21. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
    [CrossRef]
  22. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
    [CrossRef]
  23. K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
    [CrossRef]
  24. S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
    [CrossRef]
  25. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
    [CrossRef]
  26. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
    [CrossRef]
  27. K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
    [CrossRef]
  28. D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
    [CrossRef]
  29. J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
    [CrossRef]
  30. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).
  31. I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture absorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. F. Messier, eds., Proc. SPIE3790, 184–194 (1999).
    [CrossRef]
  32. S. R. Kennedy, M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [CrossRef] [PubMed]
  33. K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
    [CrossRef]
  34. H. K. Pulker, G. Paesold, E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt. 15, 2986–2991 (1976).
    [CrossRef] [PubMed]
  35. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
    [CrossRef] [PubMed]
  36. K. Robbie, M. Brett, “Thin film HBMs and associated optical phenomena,” in Proceedings of Electromagnetics of Complex Media Bianisotropics, W. S. Weiglhofer, ed. (Glasgow University, Glasgow, Scotland, 1997), pp. 69–71.
  37. S. Chandrasekhar, Liquid Crystals (Cambridge University, Cambridge, England, 1992).
    [CrossRef]
  38. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

2003 (2)

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

2002 (4)

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

2001 (3)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

2000 (3)

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

1999 (5)

A. Lakhtakia, “Dielectric sculptured thin films for polarization-discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
[CrossRef]

1998 (4)

R. A. M. Hikmet, H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature (London) 392, 476–479 (1998).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

1997 (1)

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

1995 (2)

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995).
[CrossRef]

1992 (1)

R. M. A. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

1989 (1)

1976 (1)

1973 (1)

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386–388 (1973).
[CrossRef]

1972 (1)

J. L Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173–174 (1972).
[CrossRef]

1959 (1)

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

1925 (1)

V. H. Zocher, “Optische anisotropie selektiv absorbierender stoffe,” Naturwissenschaften 13, 1015–1021 (1925).
[CrossRef]

Albrand, G.

Allen, T. H.

Arnold, M.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[CrossRef]

Bennett, J. M.

Binet, C.

C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

Borgogno, J. P.

Brett, M.

K. Robbie, M. Brett, “Thin film HBMs and associated optical phenomena,” in Proceedings of Electromagnetics of Complex Media Bianisotropics, W. S. Weiglhofer, ed. (Glasgow University, Glasgow, Scotland, 1997), pp. 69–71.

Brett, M. J.

S. R. Kennedy, M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
[CrossRef]

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

Broer, D. J.

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
[CrossRef]

Carniglia, C. K.

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge University, Cambridge, England, 1992).
[CrossRef]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).

Fedosejevs, R.

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Gu, C.

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

Guenther, K. H.

Harris, K. D.

K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Hikmet, R. A. M.

R. A. M. Hikmet, H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature (London) 392, 476–479 (1998).
[CrossRef]

Hodgkinson, I.

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture absorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. F. Messier, eds., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

Huizinga, A.

K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Janning, J. L

J. L Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173–174 (1972).
[CrossRef]

John, S.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

Kahn, F. J.

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386–388 (1973).
[CrossRef]

Kemperman, H.

R. A. M. Hikmet, H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature (London) 392, 476–479 (1998).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

Knight, B.

Kowal, J.

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

Lakhtakia, A.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

A. Lakhtakia, “Dielectric sculptured thin films for polarization-discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

Lazarides, B.

Mauzac, M.

C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

McGrath, K. M.

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture absorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. F. Messier, eds., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

McPhun, A.

I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

Messier, R.

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

Miguez, H.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

Mitov, M.

C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

Paesold, G.

Pelletier, E.

Pulker, H. K.

Rao, K. N.

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
[CrossRef]

Ritter, E.

Robbie, K.

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

K. Robbie, M. Brett, “Thin film HBMs and associated optical phenomena,” in Proceedings of Electromagnetics of Complex Media Bianisotropics, W. S. Weiglhofer, ed. (Glasgow University, Glasgow, Scotland, 1997), pp. 69–71.

Saxer, A.

Schmell, R. A.

Shafai, C.

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Sit, J. C.

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
[CrossRef]

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Sunal, P. D.

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

Toader, O.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

Tsui, Y. Y.

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

Tuttle-Hart, T.

Vick, D.

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

Weiglhofer, W. S.

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995).
[CrossRef]

Wu, Q.

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture absorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. F. Messier, eds., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

Yeh, P.

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

Young, N. O.

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

Zocher, V. H.

V. H. Zocher, “Optische anisotropie selektiv absorbierender stoffe,” Naturwissenschaften 13, 1015–1021 (1925).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386–388 (1973).
[CrossRef]

J. L Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173–174 (1972).
[CrossRef]

R. M. A. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[CrossRef]

Electrochem. Solid-State Lett. (1)

K. D. Harris, A. Huizinga, M. J. Brett, “High-speed porous thin-film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Binet, M. Mitov, M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

J. Mater. Res. (2)

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

J. C. Sit, D. Vick, K. Robbie, M. J. Brett, “Thin-film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14, 1197–1199 (1999).
[CrossRef]

J. Vac. Sci. Technol. A (2)

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (2)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

I. Hodgkinson, Q. H. Wu, A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin-film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

Liq. Cryst. (2)

J. C. Sit, D. J. Broer, M. J. Brett, “Alignment and switching of nematic liquid crystals embedded in porous chiral thin films,” Liq. Cryst. 27, 387–391 (2000).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, M. J. Brett, “Optical activity of chiral thin film and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

Nano Lett. (1)

S. R. Kennedy, M. J. Brett, O. Toader, S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[CrossRef]

Nature (London) (5)

R. A. M. Hikmet, H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature (London) 392, 476–479 (1998).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature (London) 351, 49–50 (1991).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature (London) 399, 764–766 (1999).
[CrossRef]

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

Naturwissenschaften (1)

V. H. Zocher, “Optische anisotropie selektiv absorbierender stoffe,” Naturwissenschaften 13, 1015–1021 (1925).
[CrossRef]

Opt. Commun. (3)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[CrossRef]

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

Opt. Eng. (3)

A. Lakhtakia, “Dielectric sculptured thin films for polarization-discriminatory handedness-inversion of circularly polarized light,” Opt. Eng. 38, 1596–1602 (1999).
[CrossRef]

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
[CrossRef]

Q. Wu, I. J. Hodgkinson, A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Photon. Nanostruct. (1)

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995).
[CrossRef]

Thin Solid Films (1)

D. Vick, Y. Y. Tsui, M. J. Brett, R. Fedosejevs, “Production of porous carbon thin films by pulsed laser deposition,” Thin Solid Films 350, 49–52 (1999).
[CrossRef]

Other (5)

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture absorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. F. Messier, eds., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

K. Robbie, M. Brett, “Thin film HBMs and associated optical phenomena,” in Proceedings of Electromagnetics of Complex Media Bianisotropics, W. S. Weiglhofer, ed. (Glasgow University, Glasgow, Scotland, 1997), pp. 69–71.

S. Chandrasekhar, Liquid Crystals (Cambridge University, Cambridge, England, 1992).
[CrossRef]

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

GLAD deposition scheme.

Fig. 2
Fig. 2

Typical scanning electron micrograph of a helical TiO2 thin film.

Fig. 3
Fig. 3

Agreement between the selective transmission and the optical rotation of sample D as measured by a spectrophotometer (dots) and a spectroscopic ellipsometer (solid curve).

Fig. 4
Fig. 4

Strong correlation in the selective transmission and optical rotation of an enantiomorphic pair of chiral GLAD films. Sample S has right-handed helical morphology, whereas sample T has left-handed helical morphology.

Fig. 5
Fig. 5

Higher-index helical GLAD films experience an increase in selective transmission: open circles, MgF2 film (sample A); filled circles, SiO2 film (sample B); solid curve, TiO2 film (sample K). In the inset the maximum optical rotation in samples A, B, and K as a function of bulk refractive index is plotted.

Fig. 6
Fig. 6

Blue, green, and red reflection peaks produced by a change in the helical pitch. The selective transmission exhibited by samples C, K, and R is plotted.

Fig. 7
Fig. 7

Peak selective transmission in samples E, F, G, I, J, and K.

Fig. 8
Fig. 8

Left, optical rotation as a function of the input linear polarization azimuth at 590 nm (solid curve), 510 nm (open circles), and 800 nm (filled squares) for sample K. Right, peak optical rotation measured in samples E through M after averaging over all possible orientations of the incident linear polarization state.

Fig. 9
Fig. 9

The ORD of 420-nm pitch helical TiO2 films (samples N through Q). Optical rotation has been averaged over all possible orientations of the incident linear polarization state. The inset illustrates that in the short-wavelength regime the optical activity is constant and equal to 3°/μm at a vacuum wavelength of 400 nm.

Tables (2)

Tables Icon

Table 1 Deposition Conditions

Tables Icon

Table 2 Helical Thin-Film Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ORλ, ϕ=12arctanm31λ+m32λcos 2 ϕ+m33λsin 2 ϕm21λ+m22λcos 2 ϕ+m23λsin 2 ϕ-ϕ,
m11λ=1/2TSλ+TPλ,
TSλ=TSSλ+TSPλ,
TPλ=TPPλ+TPSλ.
TLCP-TRCP=-2m14λ.

Metrics